02 VD2 SA Series

Version 12.1 authored by Nora Zhou on 2024/06/14 10:22

Table of Contents

02 VD2 SA Series
Preface
User Manual Version History
01 Precautions
Safety
Storage and transportation
Installation
Wiring 15
Operation 15
Maintenance and inspection
03 Installation
Installation of servo drive
Dimensions 17
Installation site
Installation environment
Installation precautions
Installation of servo motor
Dimensions
Installation site
Installation environment
Installation precautions
04 Wiring
Main circuit wiring
Main circuit terminals
Power wiring
Precautions
Power line connection
Power line
Brake device cable
Encoder cable connection

Servo drive control input and output wiring 44	8
CN2 pin distribution	8
Wiring diagram	63
Position instruction input signal	6
Analog input signal	9
Digital input&output signals6	60
Brake wiring	0
Communication signal wiring	2
Communication connection with servo host computer (RS422)	'3
Communication connection with PLC and other device (RS485)	'5
05 Panel	7
Panel composition	
Panel display	
Display switching	
Status display	
Parameter display	
Fault display 8	
Monitor display) [
Panel operation	2
Parameter setting	2
Jog operation	3
Factory reset	;4
06 Operation 8	6
Basic settings	6
Check before operation	6
Power-on 8	6
Jog operation	37
Rotation direction selection	37
Braking resistor	8
Servo operation	9
Servo shutdown	9
Brake device	97

Position control mode	101
Position instruction input setting	102
Electronic gear ratio	117
Position instruction filtering	120
Clearance of position deviation	121
Position-related DO output function	121
Speed control mode	124
Speed instruction input setting	124
Acceleration and deceleration time setting	130
Speed instruction limit	131
Zero-speed clamp function	132
Speed-related DO output function	133
Torque control mode	137
Torque instruction input setting	138
Torque instruction filtering	140
Torque instruction limit	141
Speed limit in torque mode	143
Torque-related DO output functions	144
Mixed control mode	146
Absolute system	148
Overview	148
Single-turn absolute value system	148
Multi-turn absolute value system	149
Related functions and parameters	151
Absolute value system encoder battery box use precautions	153
Other functions	155
VDI	155
Port filtering time	157
VDO	157
Motor overload protection	159
07 Adjustments	161
Overview	161
Inertia recognition	162

Gain adjustment	34
Automatic gain adjustment 16	35
Manual gain adjustment	57
Feedforward gain 17	71
Model Tracking Control Function 17	72
Gain switching 17	74
Mechanical resonance suppression	33
Mechanical resonance suppression methods	33
Notch filter	34
Low frequency vibration suppression	36
Type A vibration suppression 18	38
08 Communication 19)0
Modbus communication	90
Hardware wiring	90
Modbus communication protocol analysis 19) 1
Modbus data frame format 19) 1
Supported function codes	91
CRC check) 3
Error response frame	93
Communication example	94
Servo communication parameter setting 19)5
Modbus communication variable address and value 19	98
Variable address	98
Variable value type 19	99
Numerical unit description	99
09 Parameters)0
Group P00 Basic settings)0
Group P01 Control parameters 20)9
Group P02 Gain adjustment	9
Group P03 Self-adjusting parameters 22	27
Group P04 Vibration suppression	30
Group P05 Signal input and output	
Group P06 DI/DO configuration	4

Group P07 multi-segment position	252
Group P10 Accessibility	268
Group P12 Communication parameters	270
Group P13 Communication input and output terminal	273
Group U0 Universal monitoring	276
Group U1 Warning monitoring	286
Group U2 Device monitoring	289
10 Malfunctions	294
Faults and warnings handling at startup	294
Position control mode	
Speed control mode	
Torque control mode	
Faults and warnings handling during operation	301
Overview	
Fault and warning code table	
Troubleshooting	307
11 Appendix	341
Lists of parameters	341
Group P00 Basic settings	342
Group P01 Control parameter	347
Group P02 Gain adjustment	350
Group P03 Self-adjustment parameters	352
Group P04 Vibration suppression	353
Group P05 Signal input and output	355
Group P06 DIDO configuration	357
Group P07 multi-segment position	359
Group P10 Accessibility	366
Group P12 Communication parameters	367
Group P13 Virtual input terminal	367
DI/DO channel function definition	368
Group U0 Monitoring parameters	373
Group U1 Warning monitoring	379
Group U2 Device monitoring	380
List of codes	381

Wire	383
02 Product Information	387
Servo drives	387
Model naming	
Composition	390
Specification	395
Servo motors	400
Model naming	
Composition	400
Specification	401

02 VD2 SA Series

Preface

This manual is applicable to Wecon VD2 Series absolute value servo drives (VD2 SA series).

In order to use this series of servo drives correctly, please read this manual carefully in advance and save it for later use.

During use, if you have any doubts about the function and performance of this equipment, please contact our technicians for relevant assistance to use this equipment smoothly.

The company's products are constantly being improved and upgraded, and the contents of this manual are subject to change without notice.

This manual is suitable for introductory and use reference books for elementary and intermediate readers. At the same time, all interpretation rights of this manual belong to our company.

The danger caused by failure to operate as required may result in serious injuries or even death.

The danger caused by failure to operate as required may result in moderate or minor injuries, and equipment damage.

User Manual Version History

2

0

-

2 1 1 2	A 1. 0	First release version	VD2- 0=SA1G model: V1.10, V1.12 VD2F- 0=SA1P model: V1.00
2 0 2 3	A 1. 1	Chapter 2 Updating the servo driver naming, updating motor model table. Chapter 3 Updating motor dimension drawing and dimension table Chapter 6 Add new section 6.6.4 "Speed Limit in Speed Mode", updating relevant pa- rameter content for firmware upgrade Chapter 11 Add the description of the scope of application of the cable	VD2- 0 SA1G model: Add V1.13 VD2F- 0 SA1P model: Add V1.01 and V1.02
2 0 2 2 4	A 1. 2	 Chapter 2 Updating section 2.1 "Servo Drive Specifications" Chapter 4 Updating section 4.1 "Main Circuit Wiring", updating section 4.5 "Communication signal wiring" Chapter 5 Updating section 5.3.3 "Restore Factory Settings" process and instructions Chapter 6 Updating section 6.6 "Absolute value system" Chapter 7 Updating section 7.3 "Gain adjustment" renderings Chapter 8 Updating section 8.2.5 "Communication Example" Chapter 10 Updating section 10.2.2 "Fault and Warning Code Table", 10.2.3 add section 10.3 "Troubleshooting" Chapters 9 and 11 adjust relevant parameters for firmware upgrades 	VD2- 0 SA1G model: Add V1.14 VD2F- 0 SA1P model: V1.01, V1.02 Add VD2- 021TA1G model: V1.01
2 0 2 1 1	V 2. 0	Chapter 4 Modify section 4.4.1 "VD2A, VD2F pin wiring diagram" Add section 4.4.1 "VD2-0xxSA1H driver DIDO pin distribution". Add section 4.4.2 "VD2-0xxSA1H mode wiring diagram" Add section 4.4.5 "VD2-0xxSA1H DIDO signal" Chapter 7 Updating section 7.3.4 "Model Tracking Control Function" Updating section 7.3.5 "Gain Switching Function" Updating section 7.4.3 "Low Frequency Vibration Suppression Function" Updating section 7.4.4 "Type A Vibration Suppression Function" Chapters 9 and 11 adjust relevant parameters for new functions such as "model track- ing control"	VD2- 0□□SA1H model: Add V1.17 firmware

Add V1.18

firmware

- 2 V Chapter 6 Updating section 6.17 "Shutdown deceleration time" setting feature.
- 0 2. Updating section 6.63 "P10-6 Multi-turn Absolute Encoder Reset" and "P10-8: Multi-
- 2 1 turn Absolute Encoder Origin Offset Compensation" Updating section 6.64 "P00-31
- 3 Encoder Read and Write Verification Abnormal Threshold Setting"

Chapter 10 add "Er.43 Drive Overload Fail" and parameter content. Add "A80 Drive 0

Overload Alarm" Modify "A91 Parameter Modification too Frequent Warning" trigger 6 condition. Add temporary solution for "A93 encoder read and write verification abnormal frequency is too high"

Chapters 9 and 11 adjust relevant parameters for new functions such as "Estop shutdown deceleration time"

- 2 V Chapter 2
- 0 2. Update 2.1.1 "Servo Drive Model Naming Rules" 2
- 2
- 4 Add 2.1.1 "VD2L Drive Appearance and Nameplate" and "VD2C Drive Appearance and Nameplate"
- 0 Add 2.1.2 "Composition of VD2L Drive" and "Composition of VD2C Drive Appearance" 1

Add 2.1.3 "Electrical Specifications for VD2L Drives" and "Electrical Specifications for VD2C Drives"

Add 2.2.2 "Motor (Wire Type) Composition Diagram"

Chapter 3

Add 3.1.1 "VD2L Drive Installation Dimension Diagram" and "VD2C Drive Installation **Dimension Diagram**"

Add 3.1.4 "VD2L Drive Minimum Installation Dimension Diagram" and "VD2C Drive Minimum Installation Dimension Diagram"

Add 3.1.4 "VD2L Drive Parallel Installation Dimension Diagram" and "VD2C Drive Parallel Installation Dimension Diagram"

Chapter 4

Add 4.1.1 "VD2L Servo Drive Main Circuit Terminal Arrangement and VD2C Servo Drive Main Circuit Terminal Arrangement"

Add 4.1.2 "VD2L drive single-phase 220V main circuit wiring" and "VD2C drive singlephase 220V main circuit wiring"

Add 4.3 "Absolute Encoder Cable Connector (Connector Type) Pin-out and Encoder Cable Pin Connection"

Add 4.4.1 "Pin-out of VD2L servo drive control input and output (CN2 interface)"

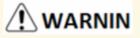
Add 4.4.1 "VD2L drive single phase 220V main circuit wiring"

Add 4.4.2 "VD2L drive position pulse mode wiring"

Add 4.4.3 "VD2L drive differential method"

Add 4.4.3 "VD2L drive collector open circuit method"

	Add 4.4.5 "VD2L drive digital input circuit"	□Update
	Add 4.4.5 "VD2L drive digital output circuit"	V1.20
	Add 4.5.1 "VD2L drive VD2L type and PC connection method"	firmware
	Chapter 6	□Add VD2L series
	Revise 6.2 "P0-01 Parameter Table 6-11 Control Mode Parameter Details"	model
	Revise 6.2 "Table 6-15 Position Pulse Type Selection Parameter Details"	□Add VD2-
	Revise 6.2 "Add VD2L P0-14 parameters"	050TA1G model
	Add 6.2.6 "VD2L-0xxSA1P pulse signal DO output function"	
	Revise 6.2.6 "Comments on P6-28, P6-30 and P6-32"	
	Revise 6.3.1 "Comments on supported models of P5-03, P5-04, P5-01 and P5-02"	
	Revise 6.4.1 "Unsupported models for P1-07"	
	Revise 6.4.1 "Table 6-45 AI_1 related parameter detail "	
	Revise 6.4.3 "Comments on P1-14"	
	Revise 6.4.3 "Comments on Table 6-52 Mixed Control Mode Parameters"	
	Revise 6.6.4 "Functions of P0-30"	
	Chapter 7	
	Revise 7.4.3 "Applicable Models for Related Parameters of Low Frequency Vibration Suppression Function"	
	Revise 7.4.4 "Applicable models for Related Parameters of Type A Vibration Suppression Function"	
	Chapter 9	
	Revise the function introduction for P0-30, and add the function of shielding encoder over temperature function, etc.	
	Revise the value range of P10-4 and cancel the shielding overload protection function	
	Add P10-11 function, enabling function of motor stall over temperature protection	
	Add a note about the VD2L model not supporting some parameters.	
	Add U0-49 motor overload internal count	
	Chapter 10	
	Add the function introduction of ER.45 drive stall over temperature protection.	
	Revise ER.27 Not clearable properties;	
The follo	wing table lists the servo driver models and supported firmware.	


Supported	Corresponding	Volta	Supported
models	model	ge	firmware

Wecon VD2SA series servo drives manual	VD2-010SA1G	VD2A	220V	V1.10
	VD2-014SA1G			V1.12
	VD2-016SA1G	VD2B		V1.13
				V1.14
				V1.15
	VD2-019SA1G			V1.16 V1.17
	VD2-021SA1G			V1.18
	VD2-025SA1GF			V1.19
	VD2-030SA1G			V1.20
	VD2F-003SA1P	VD2F	_	V1.00
				V1.01
	VD2F-010SA1P			V1.02
				V1.16
	VD2F-014SA1P	-		V1.17
				V1.18
	VD2L-010SA1P	VD2L	_	V1.00
	VD2L-014SA1P			
	VD2-021TA1G	VD2B	380V	V1.01
				V1.17
				V1.18
				V1.19
				V1.20
	VD2-030TA1G	VD2C		V1.20
	VD2-040TA1G			
	VD2-0250TA1G			

01 Precautions

Safety

This section describes the important items that users must observe, such as product confirmation, storage, transportation, installation, wiring, operation, inspection, and disposal. Please follow the steps required by this manual for trial operation.

After the power is turned off for more than 5 minutes and the power indicator is off, use a multimeter to confirm that the voltage across the high-voltage capacitor has dropped to a safe voltage, and then proceed with the disassembly and assembly of the drive, otherwise the residual voltage may cause electric shock.

SPlease never touch the inside of the servo drive, otherwise it may cause electric shock.

SPlease insulate the connection part of the power terminal, otherwise it may cause electric shock.

The grounding terminal of the servo drive must be grounded, otherwise it may cause electric shock.

• Please install the servo drive, servo motor, and external braking resistor on non-combustible materials, otherwise it may cause a fire.

Se sure to connect an electromagnetic contactor and a non-fuse circuit breaker between the power supply and the main circuit power supply of the servo drive. Otherwise, when the equipment fails, it may cause fire because it cannot cut off the large current.

In the servo drive and servo motor, please do not mix with oil, grease and other flammable foreign objects and screws, metal pieces and other conductive foreign objects, otherwise it may cause a fire.

Note: When the servo motor is connected to the machine, if an operation error occurs, it will not only cause damage to the machine, but also sometimes cause personal safety accidents.

NDo not damage or pull the cable forcefully, do not subject the cable to excessive force, or place heavy objects underneath, otherwise electric shock may occur, causing the product to stop operating or burn out.

• Do not use the brake of the brake motor for normal braking, otherwise it may cause a malfunction.

• Except for the designated operator, please do not set up, disassemble and repair the equipment, otherwise it may cause electric shock or injury.

• Do not remove the cover, cables, connectors and optional accessories while the power is on, otherwise it may cause electric shock.

SPlease install a stop device on the machine side to ensure safety.

• Please take measures to ensure that your personal safety will not be endangered when restarting, otherwise it may cause injury.

Solve Do not modify this product, otherwise it may cause personal injury or mechanical damage.

Storage and transportation

01 Precautions

SPlease keep and install in the following environment:

Selaces without direct sunlight;

Selaces where the ambient temperature does not exceed product specifications;

Selaces where the relative humidity does not exceed product specifications;

Selaces where condensation will not occur due to rapid changes in temperature;

Selaces free of corrosive gas and flammable gas;

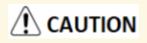
SPlaces without combustible materials nearby;

SPlaces with less dust, salt and metal powder;

Selaces where there is no splash of water, oil, medicine, etc.;

Selaces where vibration or shock will not affect the product (places that exceed product specifications);

• Places that will not be exposed to radiation;


Storage or installation in environments other than the above may cause product failure or damage:

SPlease use the correct method for handling according to the weight of the product;

So not hold the motor cable or motor shaft for transportation;

NWhen operating the servo unit and servo motor, please pay attention to sharp parts such as the corners of the device.

Installation

• Do not install this product in a place where water will be splashed or in an environment prone to corrosion;

• Please be sure to comply with the devices of the installation direction, otherwise it may cause device failure;

Note: When installing, please make sure to keep the specified distance between the servo drive and the inner surface of the electric cabinet and other machines, otherwise it may cause fire or device failure;

• Do not apply excessive impact, otherwise it may cause equipment failure;

• Do not sit on the product or place heavy objects on it, otherwise it may cause personal injury;

• Do not use this product near flammable gases and combustibles, otherwise there may be a risk of electric shock or fire;

• Do not block the suction and exhaust ports, and do not allow foreign objects to enter the product, otherwise it may cause device failure or fire due to the aging of internal components.

Wiring

• Do not connect the three-phase power supply to the output terminals U, V, W of the servo drive, otherwise it may damage the device or cause a fire;

• Please connect the output U, V, W of the servo drive and the U, V, W of the servo motor directly. Do not use the electromagnetic contactor during the connection, otherwise it may cause abnormal operation or malfunction of the device;

Note that the DO output terminals are connected to the relay, please pay attention to the polarity of the freewheeling diode, otherwise the drive may be damaged and the signal can not be output normally;

SPlease fix the power terminal and the motor terminal firmly, otherwise it may cause a fire hazard;

• Do not connect the 220V servo unit directly to the 380V power supply;

• Do not pass the power line and signal line through the same pipe or bundle them together. When wiring, the power line and signal line should be separated by more than 30cm;

Subset wisted-pair shielded cables for signal cables and encoder cables, and the shielding layer should be grounded at both ends;

The wiring length of the signal input line is recommended to be within 3M, and the wiring length of the encoder is recommended to be within 15M;

SWhen using in the following places, please take adequate shielding measures.

Nhen interference occurs due to static electricity.

Selaces where strong electric or magnetic fields are generated;

• Places where there may be radiation;

When checking the status, please make sure that the CHARGE indicator is off.

Operation

Suring trial operation, in order to prevent accidents, please run the servo motor without load (not connected to the drive shaft), otherwise it may cause injury.

SWhen the servo motor is running, do not touch its rotating part, otherwise it may cause injury.

Se sure to set the correct moment of inertia ratio, otherwise it may cause vibration.

Note that the supporting machine and starts to run, please set the user parameters in accordance with the machine in advance. If you start running without setting parameters, it may cause the machine to lose control or malfunction. Note: When installing on the supporting machinery and starting to run, please put the servo motor in a state where it can be stopped in an emergency at any time, otherwise you may get injured.

Note: When using a servo motor on a vertical axis, please install a safety device to prevent the workpiece from falling under alarm, overtravel, etc. states. In addition, please set the servo lock stop setting when the over-travel occurs, otherwise the workpiece may fall in the overtravel state.

Since extreme user parameter adjustments and setting changes will cause the servo system to become unstable, please never make settings, otherwise it may cause injury.

Note: When an alarm occurs, reset the alarm after removing the cause and ensuring safety, and restart the operation, otherwise it may cause injury.

Sexcept for special purposes, do not change the maximum speed value (P1-10). If you change it carelessly, it may damage the machine or cause injury.

Note: When the power is turned on and within a period of time after the power is cut off, the heat sink of the servo drive, the external braking resistor, the servo motor, etc. may experience high temperature. Please do not touch it, otherwise it may cause burns.

★ If the power supply is restored after an instantaneous power failure occurs during operation, the machine may restart suddenly, so please do not approach the machine, and press the stop button when the power is off, and operate after the power supply is stable.

Maintenance and inspection

CAUTION

The power on and off operation should be carried out by professional operators.

Note that the insulation resistance of the drive, please cut off all the connections with the drive first, otherwise it may cause the drive to malfunction.

• Do not use gasoline, alcohol, acid and alkaline detergents to avoid discoloration or damage to the casing.

Note: When replacing the servo drive, please transfer the user parameters of the servo drive to the new servo drive before restarting operation, otherwise the machine may be damaged.

• Do not change the wiring when the power is on, otherwise it may cause electric shock or injury.

• Do not disassemble the servo motor, otherwise it may cause electric shock or injury.

Installation of servo drive

Dimensions

Unit: mm

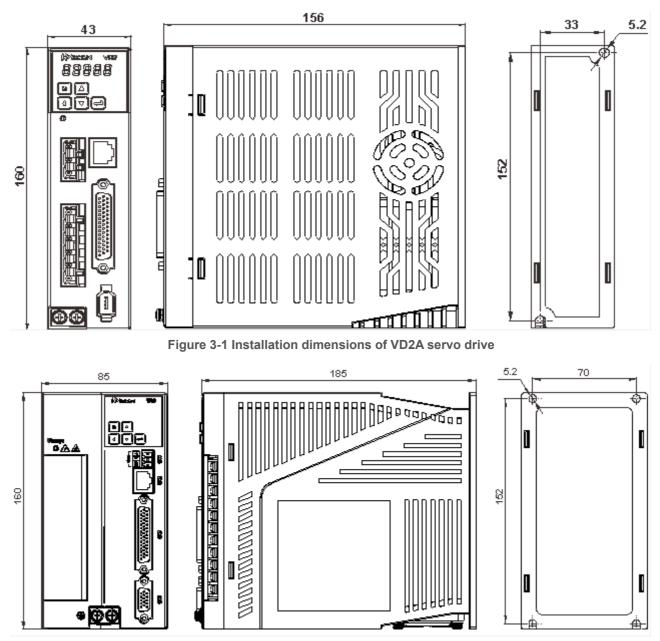


Figure 3-2 Installation dimensions of VD2B servo drive

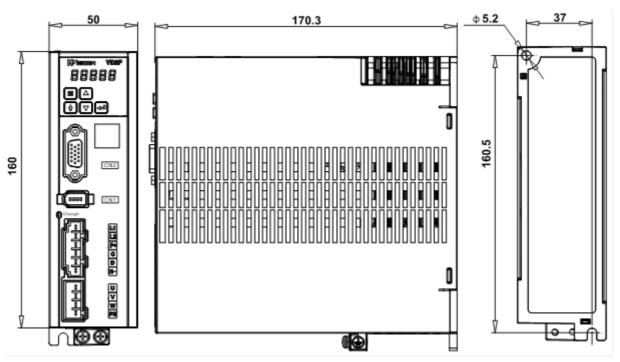


Figure 3-3 Installation dimensions of VD2F servo drive

Installation site

- 1. Please install it in an installation cabinet free from sunlight and rain;
- 2. In a place without vibration;
- 3. Please do not install in the environment of high temperature, humidity, dust and metal dust;
- 4. Do not use this product near corrosive and flammable gases such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc., or combustible materials.

Installation environment

The installation environment of the servo drive has a direct impact on the normal function of the drive and its service life. Therefore, the installation environment of the servo drive must meet the following conditions:

Item	Specification
Ambient temperature	-10°C to 40°C (no freezing)
Ambient humidity	-20% to 90%RH (non-condensing)
Storage temperature	-20°C to 60°C
Storage humidity	-20% to 90%RH (non-condensing)
Protection grade	IP65
Vibration	Less than 0.5G (4.9m/s2), 10 to 60Hz (non-continuous operation)
Power Systems	TN system*

Note: *: The neutral point of the power system is directly connected to the ground, and the exposed metal components are connected to the ground through a protective grounding conductor.

Installation precautions

Installation specifications

In order to achieve a good cooling cycle effect, ensure that there is enough ventilation space around it when installing the servo drive, and be sure to comply with the installation standards in the control cabinet shown in the figure below, otherwise it may cause the drive to malfunction. For typical minimum installation dimensions, Please refer to Figure 3-4.

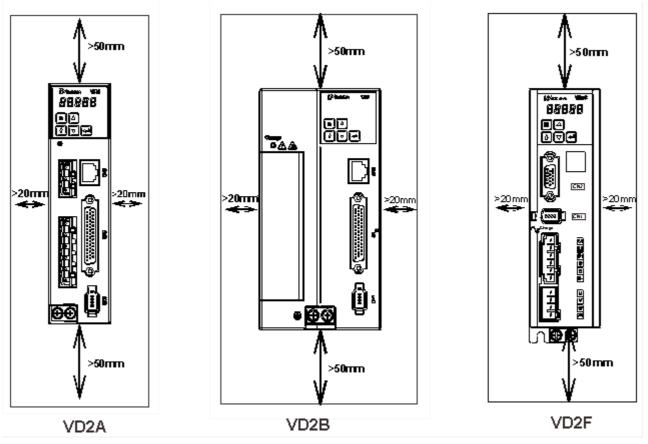


Figure 3-4 Minimum installation size

Parallel installation

When multiple units are installed in parallel, the minimum distance between each other should be 20mm, and the distance between each other should be at least 100mm. Please refer to Figure 3-4 and Figure 3-5 for details. To prevent temperature rise, a cooling fan can be placed on the upper part. If you need a smaller spacing installation, please consult us.

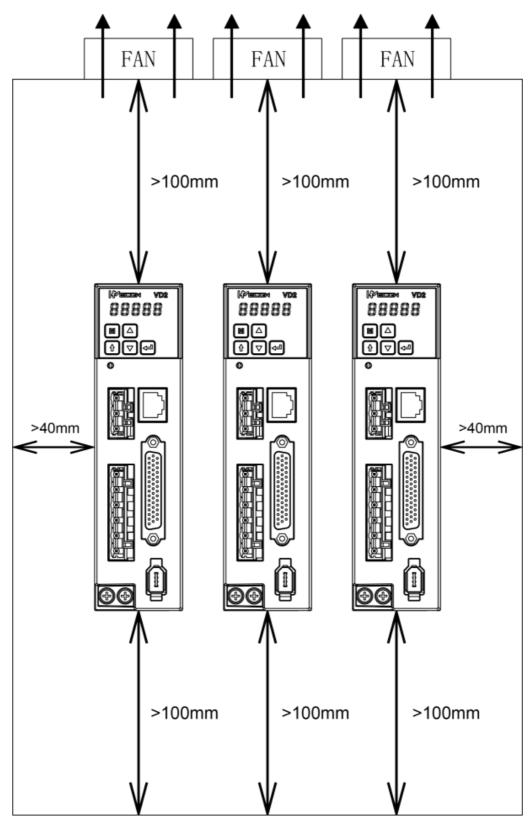


Figure 3-5 Parallel installation dimensions of multiple VD2A drives

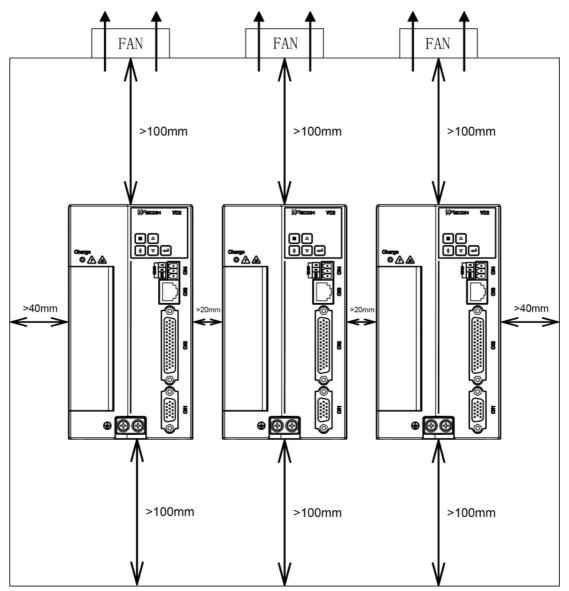


Figure 3-6 Parallel installation dimensions of multiple VD2B drives

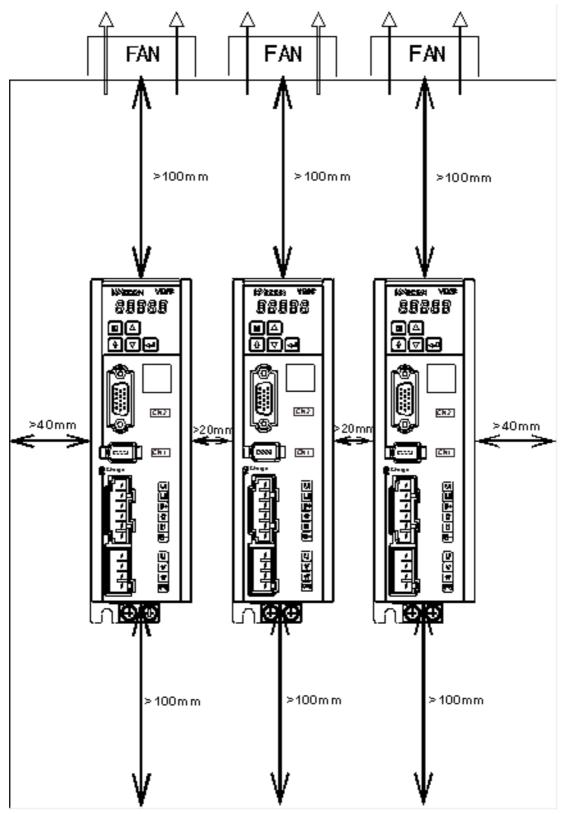


Figure 3-7 Parallel installation dimensions of multiple VD2F drives

Installation direction

When installing the servo drive, please face the front of the servo drive (panel control interface) to the operator so that the servo drive is perpendicular to the wall.

Installation of servo motor

Dimensions

unit: mm

Installation dimensions of WD series 40 flange servo motor

Specification	WD series 40 flange motor
Rated torque (N.m)	0.318
LA without brake (mm)	74.8
LA with brake (mm)	108

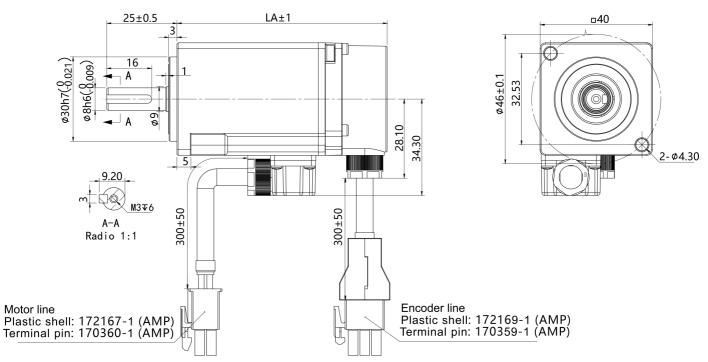


Figure 3-8 Installation dimension of WD series 40 flange servo motor

Installation dimensions of WD series 60 flange servo motor

Specification	WD series	60 flange motor
Rated torque (N.m)	0.64	1.27
LA without brake (mm)	75	92
LA with brake (mm)	104.5	121.5

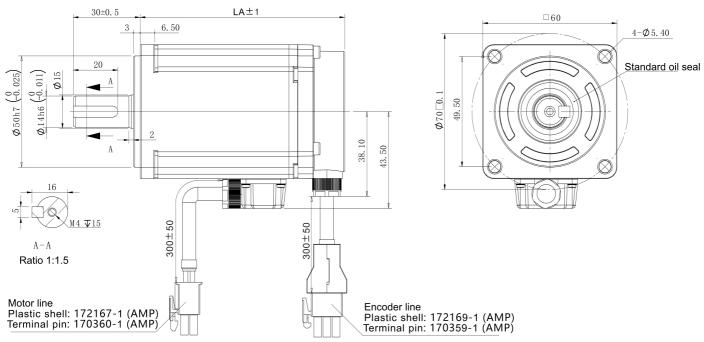


Figure 3-9 Installation dimension of WD series 60 flange servo motor

Installation dimensions of 80 flange servo motor

• WD series motor

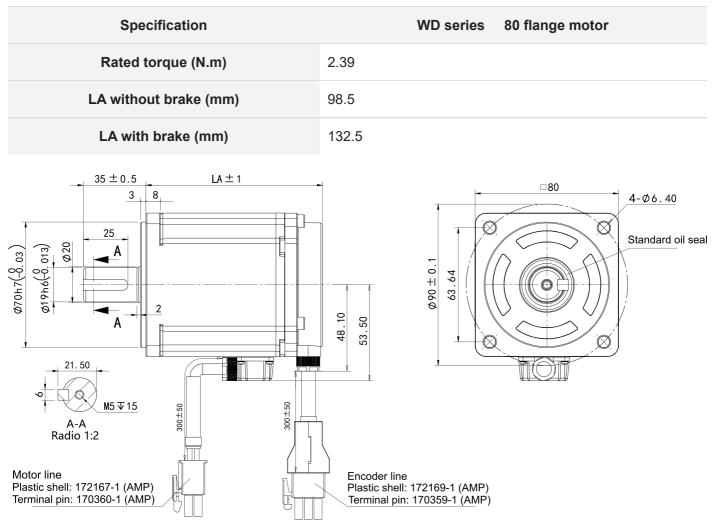


Figure 3-10 Installation dimension of WD series 80 flange motor

• WE series motor

Specification	WE series	80 flange motor
Rated torque (N.m)	3.5	4.0
LA without brake (mm)	179	191
LA with brake (mm)	221	233

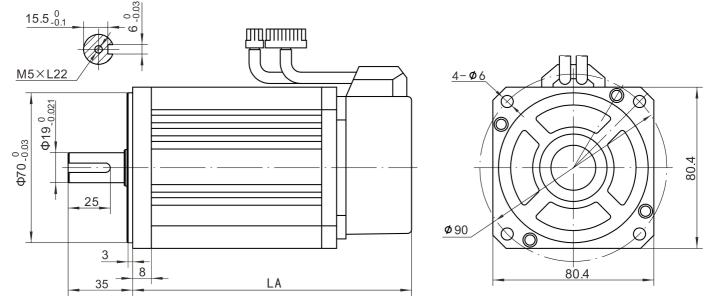


Figure 3-11 Installation dimension of WE series 80 flange motor

Installation dimensions of WE series 110 flange servo motor

Specification		WE series 110 flar	nge motor
Rated torque (N.m)	4	5	6
LA without brake (mm)	189	204	219
LA with brake (mm)	254	269	284

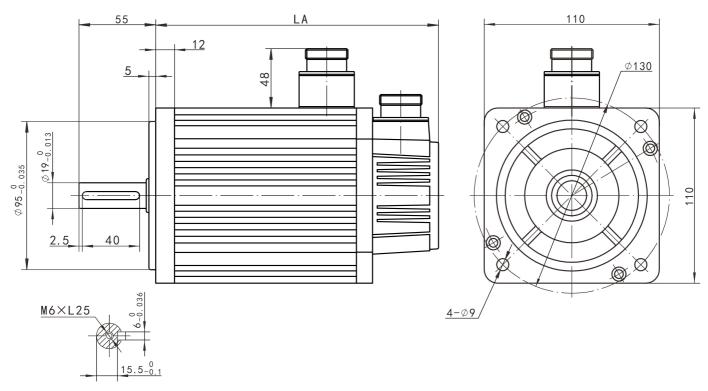


Figure 3-12 Installation dimension of WE series 110 flange servo motor

Installation dimensions of the 130 flange servo motor

Specification	WE series 130 flange motor							
Rated torque (N.m)	4	5	6	7.7	10		15	
					1500rpm	2000rpm	1500rpm	2500rpm
LA without brake (mm)	166	171	179	192	213	209	241	231
LA with brake (mm)	226	231	239	252	276	272	304	294

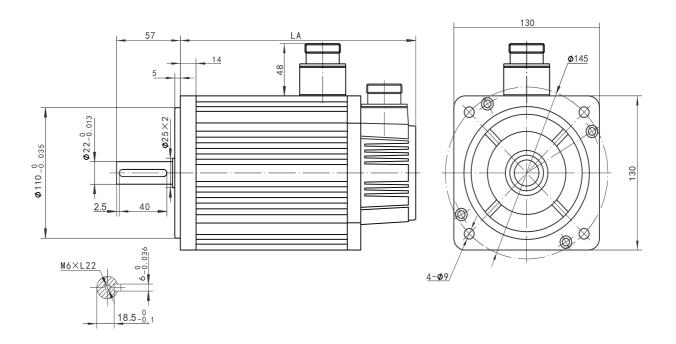


Figure 3-13 Installation dimension of WE series 130 flange servo motor

Installation site

- 1. Do not use the motor near corrosive, flammable gas environment, combustible materials such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.
- 2. Do not remove the oil seal in places where there is grinding fluid, oil mist, iron powder, cutting, etc.
- 3. Do not use the motor in a closed environment. Closed environment will cause high temperature of the motor and shorten the service life.
- 4. A place far away from heat sources such as stoves.

Installation environment

The installation environment of the servo motor has a direct impact on the normal function of the motor and its service life. Therefore, the installation environment of the servo motor must meet the following conditions:

Item	Specification
Ambient temperature	-10°C to 40°C (no freezing)
Ambient humidity	-20% to 90%RH (no condensation)
Storage temperature	-20°C to 60°C
Storage humidity	-20% to 90%RH (no condensation)
Protection grade	IP65
Vibration	Less than 0.5G (4.9m/s2), 10 to 60Hz (non-continuous operation)

Installation precautions

ltem	Specification			
Rust inhibitor	Before installation, please wipe clean the "rust inhibitor" on the shaft extension end of the servo motor, and then do the relevant anti-rust treatment.			
Encoder notice	 When installing a pulley on a servo motor shaft with a keyway, use a screw hole at the shaft end. In order to install the pulley, first insert the double-headed nail into the screw hole of the shaft, use a washer on the surface of the coupling end, and gradually lock the pulley into the pulley with a nut; For the servo motor shaft with keyway, use the screw hole on the shaft end to install; For shafts without keyway, friction coupling or similar methods are used; When removing the pulley, use a pulley remover to prevent the bearing from being strongly impacted by the load; To ensure safety, install a protective cover or similar device in the rotating area, such as a pulley installed on the shaft. 			
Centering	When linking with the machine, please use the coupling, and keep the axis of the servo motor and the axis of the machine in a straight line.			
Installation direction	The servo motor can be installed horizontally or vertically.			
Oil and water counter measures	 When using in a place with dripping water, please use it after confirming the protection level of the servo motor. When using it in a place where oil drips on the shaft penetration part, do not remove the oil seal of the servo motor. The use conditions of the servo motor with oil seal: When using, please make sure the oil level is lower than the lip of the oil seal; The oil seal can be used in a state with a good degree of splashing of oil foam; 			
	• When the servo motor is installed vertically upwards, please be careful not to accu- mulate oil on the oil seal lip.			
Stress condition of the cable	Do not "bend" the wire or apply "tension" to it, especially the signal wire whose core di- ameter is 0.2mm or 0.3mm. During the wiring process, please do not make it too tight.			
Processing of the connector part	 Regarding the connector part, please note the following: When connecting the connector, please make sure that there is no foreign matter such as garbage or metal pieces in the connector; When connecting the connector to the servo motor, be sure to connect it from the side of the main circuit cable of the servo motor first, and the grounding of the main line cable must be reliably connected. If you connect one side of the encoder cable first, the encoder may malfunction due to the potential difference between PEs; When connecting, please make sure that the pin arrangement is correct; The connector is made of resin, please do not apply impact to avoid damage to the connector; 			

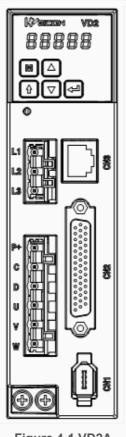
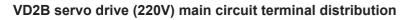
• Do not apply stress to the connector part while carrying the cable while the cable is connected. If stress is applied to the connector part, the connector may be damaged.

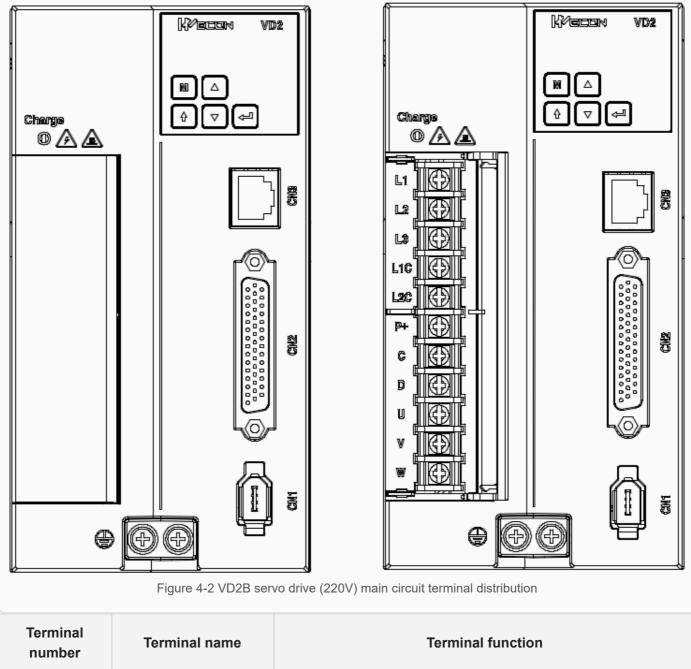
04 Wiring

Main circuit wiring

Main circuit terminals

VD2A servo drive main circuit terminal distribution

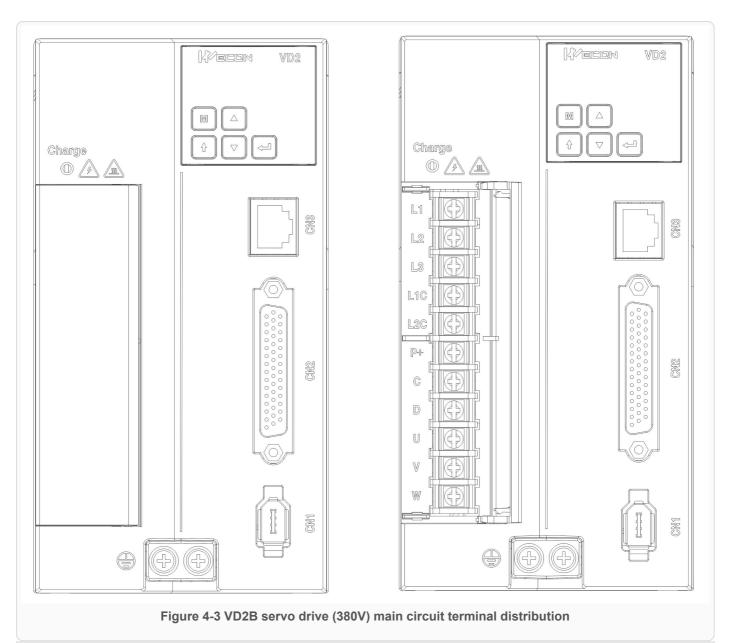




Figure 4-1 VD2A servo drive main circuit terminal distribution

Terminal number	Terminal name	Terminal function
L1		Single-phase 220V AC input is connected to L1 and L3.
L2	Power input terminal	
L3		
P+		Use internal braking resistor: short-circuit C and D.
С	Braking resistor terminal	Use external braking resistor: Please disconnect the short wire between C and D, and then connect the external
D		braking resistor between P+ and C;

U		Connect with the U, V and W of motor to power the motor.
v	Motor power line terminal	
w		
Ground terminal	Ground terminal	Grounding treatment of the servo drive.

Table 4-1 The name and function of VD2A servo drive main circuit terminal

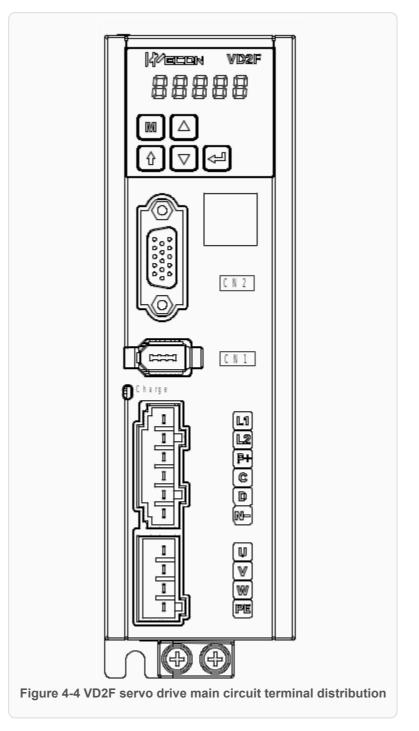

L1		• Three-phase 220V AC input is connected to L1, L2, L3;
L2	Power input terminal	 Single-phase 220V AC input is connected to L1 and L3.

L3	Power input terminal	 Three-phase 220V AC input is connected to L1, L2, L3; Single-phase 220V AC input is connected to L1 and L3.
L1C	Control power input	Single-phase 220V AC input is connected to L1C and L2C.
L2C	terminal	
P+	Braking resistor terminal	Use internal braking resistor: short-circuit C and D.
С		Use external braking resistor: Please disconnect the short wire between C and D, and then connect the external
D		braking resistor between P+ and C.
U	Motor power line terminal	Connect with the U, V and W of motor to power the motor.
V		
W		
Ground terminal	Ground terminal	Grounding treatment of the servo drive.

Table 4-2 The name and function of VD2B servo drive (220V) main circuit terminal

VD2B servo drive (380V) main circuit terminal distribution

04 Wiring

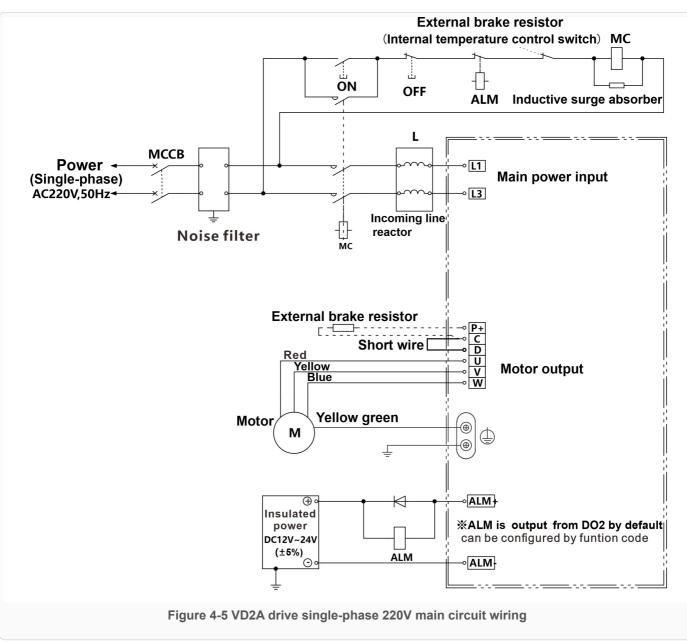


Terminal number	Terminal name	Terminal function	
L1	Power input terminal	Three-phase 380V AC input is connected to L1, L2, L3;	
L2			
L3			
L1C	Control power input	Single-phase 380V AC input is connected to L1C and L2C.	
L2C	terminal		
P+	Braking	• Use internal braking resistor: short-circuit C and D.	
С	resistor terminal	 Use external braking resistor: Please disconnect the short wire between C and D, and then connect the exter- 	
D		nal braking resistor between P+ and C.	

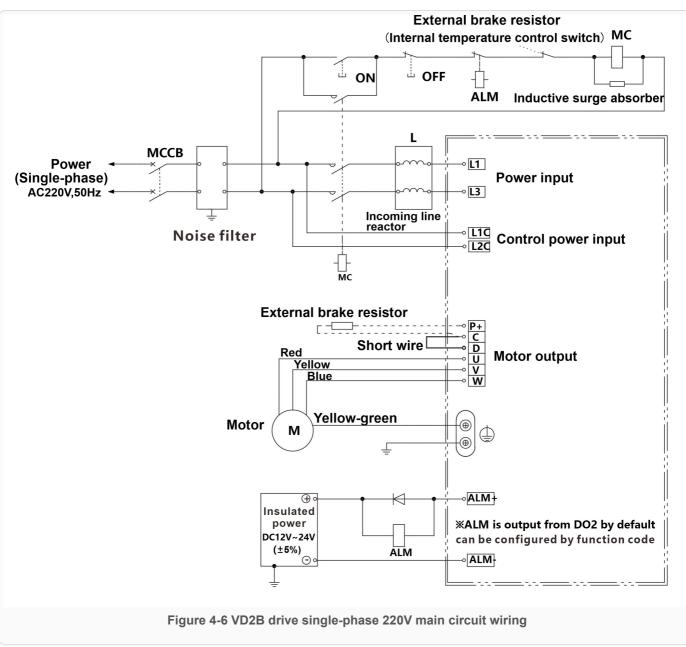
U	Motor power line terminal	Connect with the U, V and W of motor to power the motor.
v		
W		
Ground terminal	Ground terminal	Grounding treatment of servo drive.

Table 4-3 The name and function of VD2B servo drive (380V) main circuit terminal

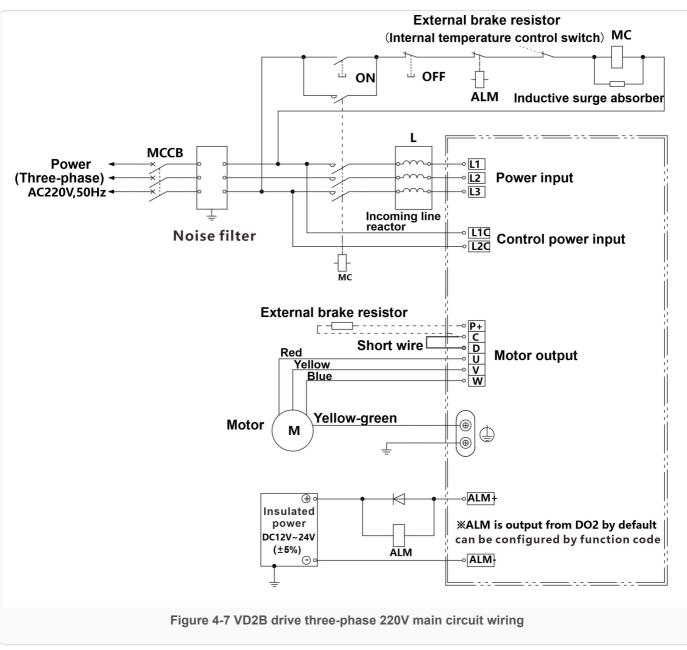
VD2F servo drive main circuit terminal distribution

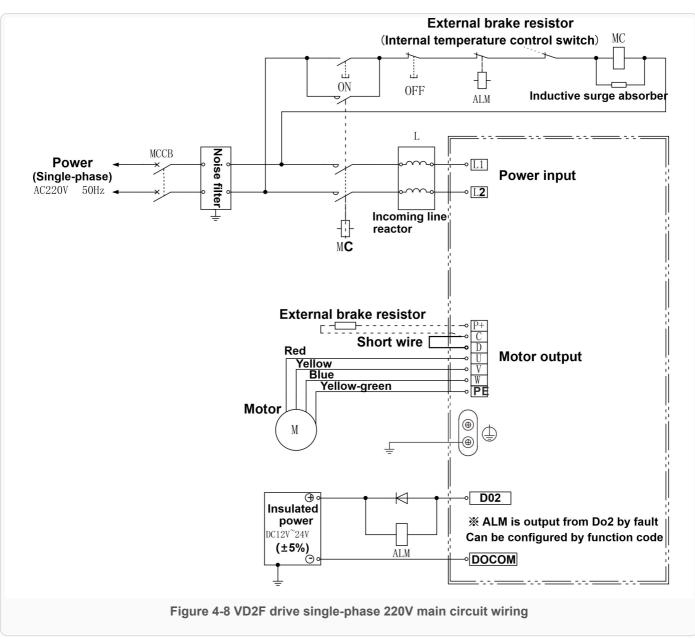


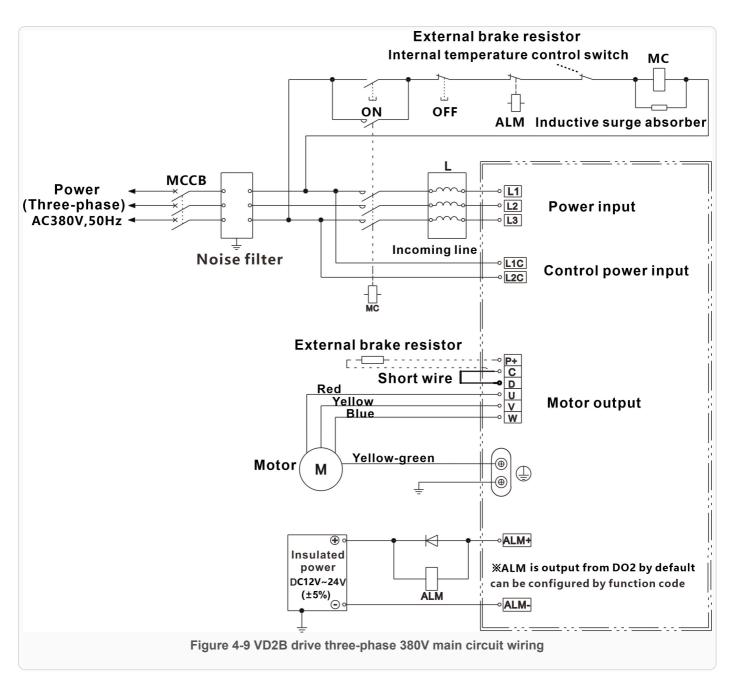
Terminal number	Terminal name	Terminal function
L1	Power input terminal	Connect single-phase 220V input power
L2		
P+	Braking resistor terminal	 Use internal braking resistor: short-circuit C and D. Use external braking resistor: Please disconnect the short wire between C and D, and then connect the external braking resistor between P+ and C.
С		
D		
P+	Common DC bus terminal	DC bus terminal of servo drive
Ν		
U	Motor power line terminal	Connect with the U, V and W of the motor to power the motor.
v		
w		
PE	Ground terminal	Grounding treatment of the servo drive.


Table 4-4 The name and function of VD2F servo drive main circuit terminal

Power wiring


Use single-phase 220V power supply model: VD2-010SA1G and VD2-014SA1G


Use single-phase 220V power supply model: VD2-016SA1G、VD2-019SA1G


Use three-phase 220V power supply model: VD2-021SA1G、VD2-025SA1G、VD2-030SA1G

Use single-phase 220V power supply model: VD2F-010SA1P、VD2F-014SA1P

Use three-phase 380V power supply model: VD2-021TA1G

Precautions

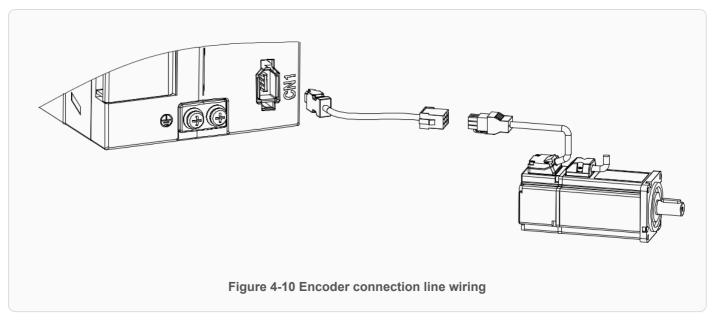
- 1. Do not connect the input power cord to the output terminals U, V, W, otherwise the servo drive will be damaged. When using the built-in braking resistor, C and D must be connected (factory default connection).
- 2. When the cables are bundled and used in pipes, etc., due to the deterioration of heat dissipation conditions, please consider the allowable current reduction rate.
- 3. When the temperature in the cabinet is higher than the cable temperature limit, please choose a cable with a larger cable temperature limit, and it is recommended that the cable wire use Teflon wire. Please pay attention to the warmth of the cable in the low temperature environment. Generally, the surface of the cable is easy to harden and break under the low temperature environment.
- 4. The bending radius of the cable should be more than 10 times the outer diameter of the cable itself to prevent the core of the cable from breaking due to long-term bending.

Power line connection

Power line

We con VD2 series servo drives have 3 kinds of interface power cables: rectangular plug, aviation plug and inline type.

Connector exterior	Terminal pin distribution	Pin description			Motor flange
		F	Rectangular plu	ıg	
		Pin number	Signal name	Color	
/7 a _	4 2	1	U	Red	40
		2	V	White	60
		3	W	Black	80
		4	PE	Yellow- green	
				•*	
			Aviation plug		
	1	Pin number	Signal name	Color	
	2 3	2	U	Black	110 130
		4	V	Yellow- green	
	4	3	W	Black	
		1	PE	Black	
		In-line type plug			
		Pin number	Signal name	Color	
		3	U	Red	<u> </u>
		1	V	White	60 80
	4	2	W	Black	
		4	PE	Yellow- green	


Note: The color of the lines is subject to the actual product. The lines described in this manual are all lines of Wecon.

Brake device cable

Co	Connector exterior		terminal pin distribution		
WD series		Pin number 1 2	Signal name BR+ BR-	40 60 80	
	1	Pin number	Signal name		
	(केंग्रेक्क की	1	DC 24V	80	
WE series		2	GND	110 130	
	2 4 3	3	-	100	

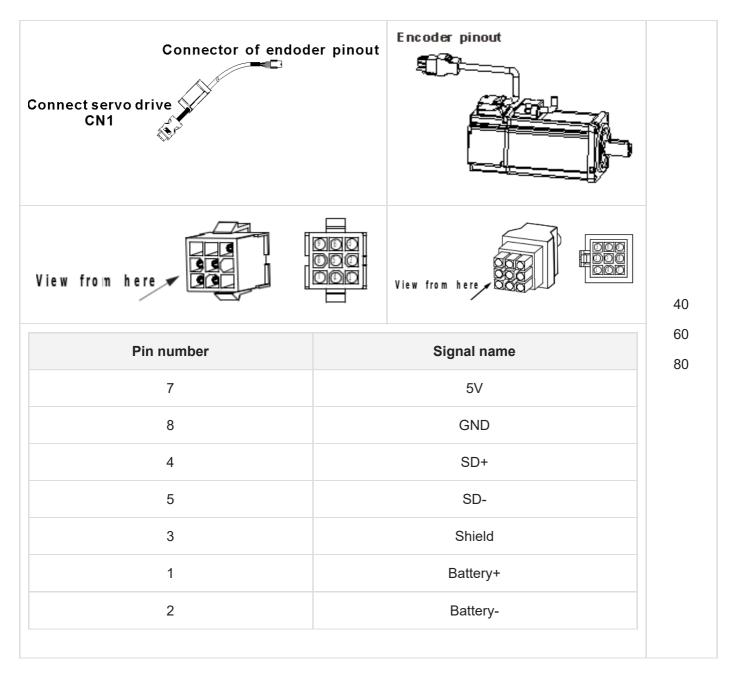
Encoder cable connection

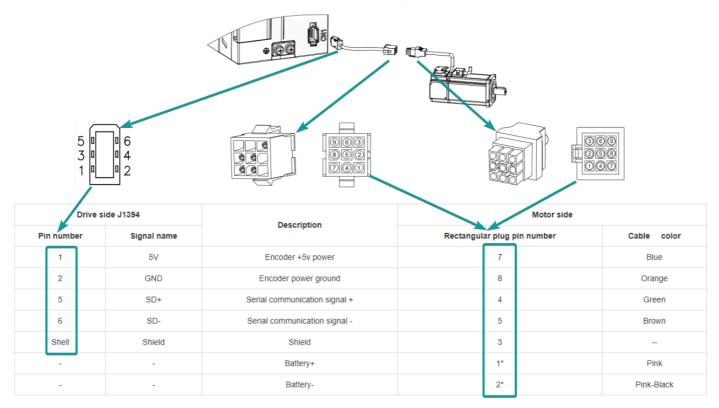
Note: It is recommended that the encoder cable should not exceed 10m, otherwise it may cause an error **A93**.

Connector exterior	Terminal pin distribution	Pin description				
		Pin number	Signal name	Pin number	Signal name	
		1	5V	4	-	
		2	GND	5	SD+	
		3	-	6	SD-	

Table 4-6 Encoder cable servo drive side connector

Connector exterior and terminal pin distribution	Motor flange
Connector exterior and terminal pin distribution	-

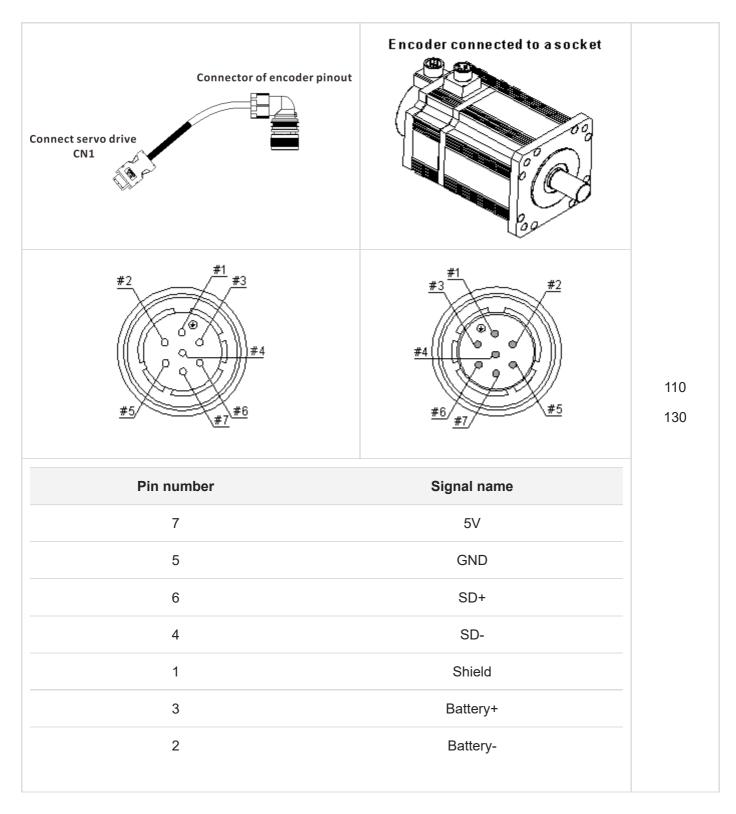



Table 4-7 Absolute value encoder line connector (Rectangular plug)

Drive sid	de J1394		Motor side	
Pin number	Signal name	Description	Rectangular plug pin number	Cable color
1	5V	Encoder +5v power	7	Blue
2	GND	Encoder power ground	8	Orange
5	SD+	Serial communication signal +	4	Green
6	SD-	Serial communication signal -	5	Brown

Shell	Shield	Shield	3	
-	-	Battery+	1*	Pink
-	-	Battery-	2*	Pink-Black

Table 4-8 Connection of encoder line pin

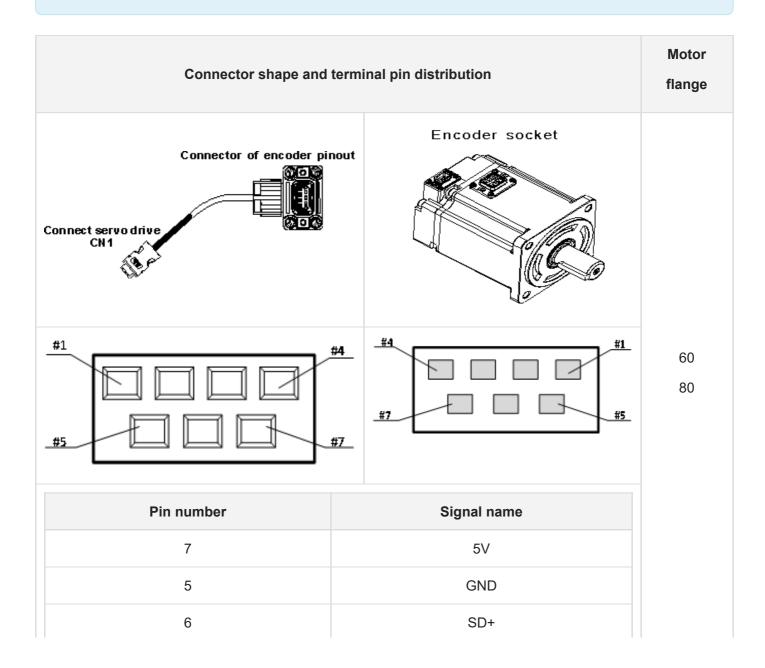

The pin with "*" indicates the signal line of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal lines. It is only used as single turn encoder line at this time.

Note: The color of the line is subject to the actual product. The lines described in this manual are all lines of Wecon!

Connector shape and terminal pin distribution	Motor flange
---	-----------------

04 Wiring

Table 4-9 Absolute value encoder line connector (Aviation plug)


Drive side J1394			Motor sid	le
Pin number	Signal name	Description	Aviation plug pin number	Cable color
1	5V	Encoder +5v power	7	Blue
2	GND	Encoder power ground	5	Orange

5	SD+	Serial communication signal +	6	Green
6	SD-	Serial communication signal -	4	Brown
Shell	Shield	Shield	1	-
-	-	Battery+	3*	Pink
-	-	Battery-	2*	Pink-Black

Table 4-10 Absolute encoder cable connector (aviation socket)

The pin with "*" indicates the signal line of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal lines. It is only used as single turn encoder line at this time.

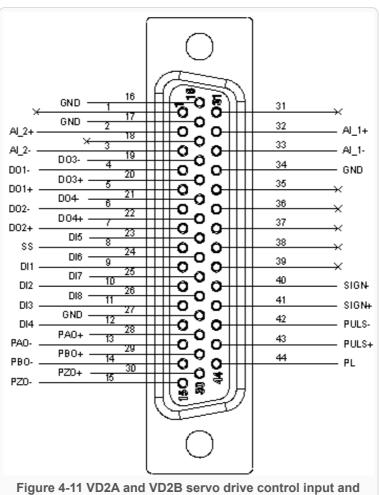
Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

4	SD-
1	Shield
3	Battery+
2	Battery-

Table 4-11 Absolute encoder cable connector (in-line type)

Drive side J1394			Motor side		
Pin number	Signal name	Description	In-line plug pin number	Cable color	
1	5V	Encoder +5v power	7	Blue	
2	GND	Encoder power ground	5	Orange	
5	SD+	Serial communication signal +	6	Green	
6	SD-	Serial communication signal -	4	Brown	
Shell	Shield	Shield	1	-	
-	-	Battery+	3*	Brown	
-	-	Battery-	2*	Black	

Table 4-12 Connection of encoder line pin

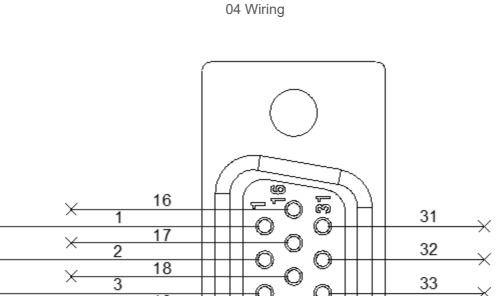

The pin with "*" indicates the signal line of encoder battery. If the multi-turn battery memory function is not used, you don't need to connect the signal lines. It is only used as single turn encoder line at this time.

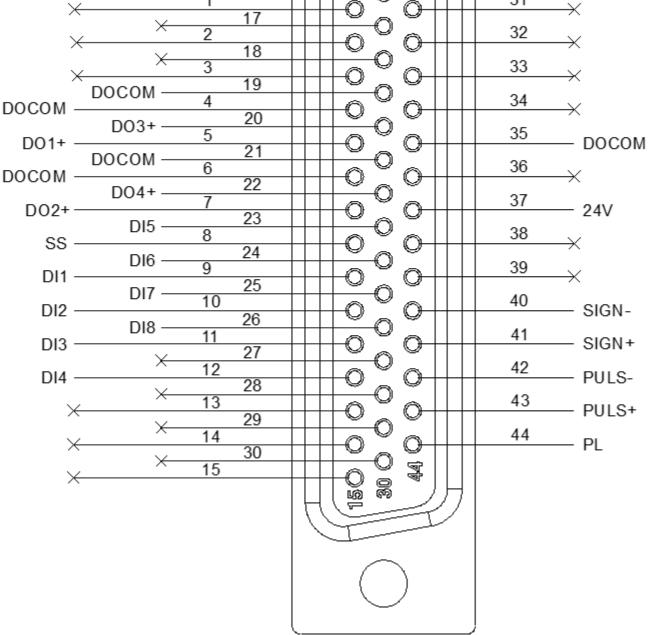
Note: The color of the cable is subject to the actual product. The cables described in this manual are all cables of Wecon!

Servo drive control input and output wiring

CN2 pin distribution

VD2A and VD2B servo drive control input and output pin distribution (CN2 interface)

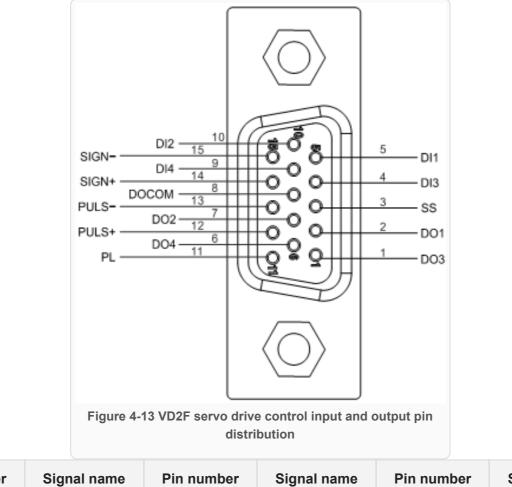

output pin distribution


Pin number	Signal name	Pin number	Signal name	Pin number	Signal name
1	-	16	GND	31	-
2	AI_2+	17	GND	32	Al_1+
3	AI_2-	18	-	33	Al_1-
4	DO1-	19	DO3-	34	GND
5	DO1+	20	DO3+	35	-
6	DO2-	21	DO4-	36	-
7	DO2+	22	DO4+	37	-
8	SS	23	DI5	38	-
9	DI1	24	DI6	39	-
10	DI2	25	DI7	40	SIGN-
11	DI3	26	DI8	41	SIGN+
10	אוח	27	CND	10	

13	PAO-	28	PAO+	43	PULS+
14	PBO-	29	PBO+	44	PL
15	PZO-	30	PZO+		

Table 4-13 CN2 interface definition of VD2A and VD2B servo drive

VD2-0xxSA1H drive control input and output pin distribution (CN2 interface)

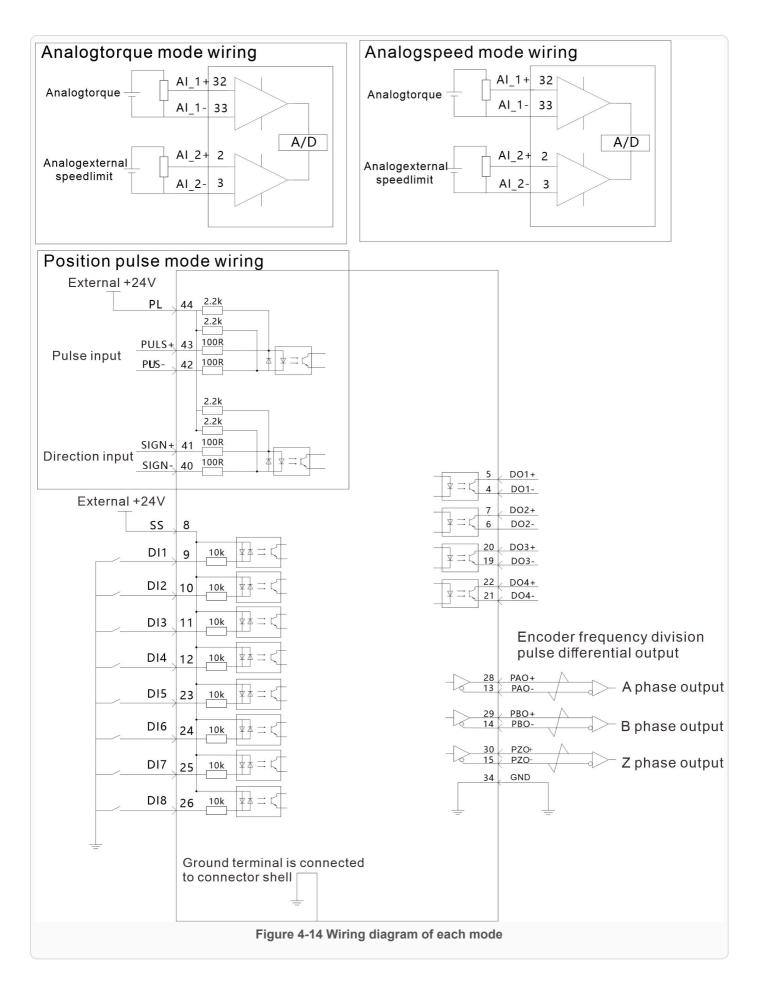


Pin number	Signal name	Pin number	Signal name	Pin number	Signal name
1		16		31	
2		17		32	
3		18		33	
4	DOCOM	19	DOCOM	34	

5	DO1+	20	DO3+	35	DOCOM
6	DOCOM	21	DOCOM	36	
7	DO2+	22	DO4+	37	24V
8	SS	23	DI5	38	
9	DI1	24	DI6	39	
10	DI2	25	DI7	40	SIGN-
11	DI3	26	DI8	41	SIGN+
12	DI4	27		42	PULS-
13		28		43	PULS+
14		29		44	PL
15		30			

Table 4-14 CN2 interface definition of VD2-0xxSA1H servo drive

VD2F servo drive control input and output pin distribution (CN2 interface)


Pin number	Signal name	Pin number	Signal name	Pin number	Signal name

1	DO3	6	DO4	11	PL
2	DO1	7	DO2	12	PULS+
3	SS	8	DOCOM	13	PULS-
4	DI3	9	DI4	14	SIGN+
5	DI1	10	DI2	15	SIGN-

Table 4-15 CN2 interface definition of VD2F servo drive

Wiring diagram

VD2A and VD2B servo drive

Note: Please refer to "Table 4-13 CN2 interface definition of VD2A and VD2B servo drive" for the pin numbers in the figure.

VD2-0xxSA1H servo drive

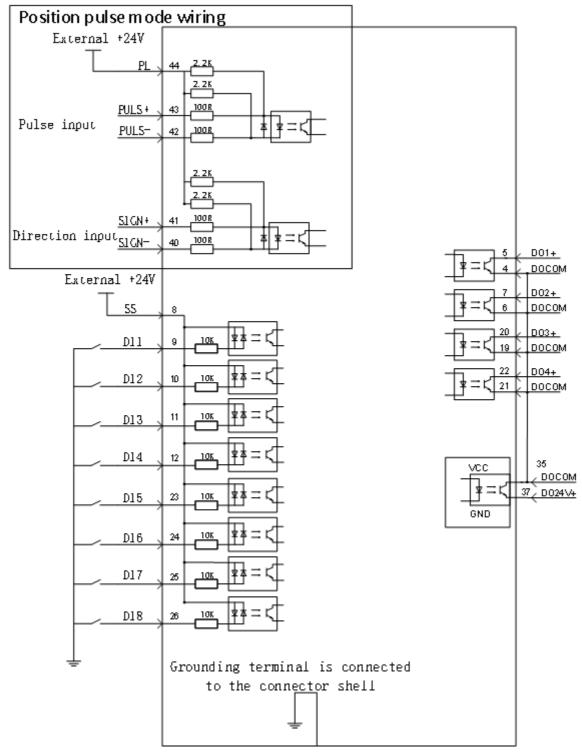
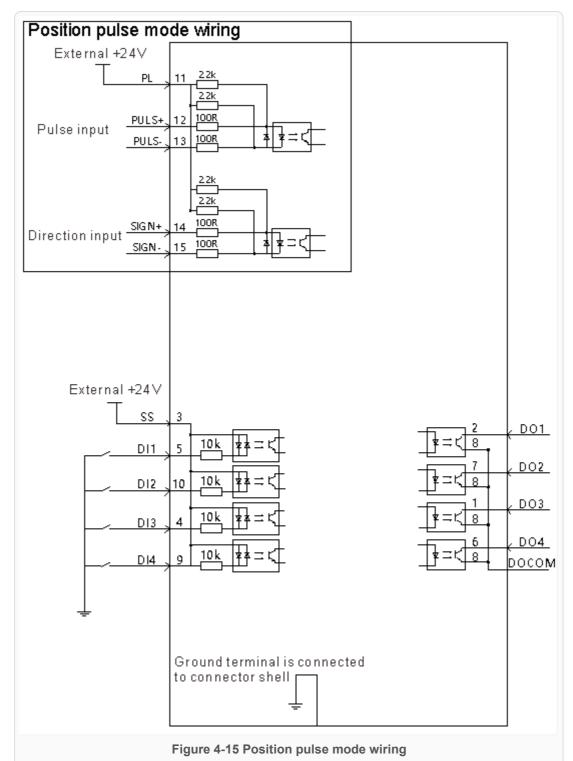



Figure 4-12 VD2-0xxSA1H servo drive control input and output pin distribution

Note: Please refer to "Table 4-14 CN2 interface definition of VD2-0xxSA1H servo drive" for the pin numbers in the figure.

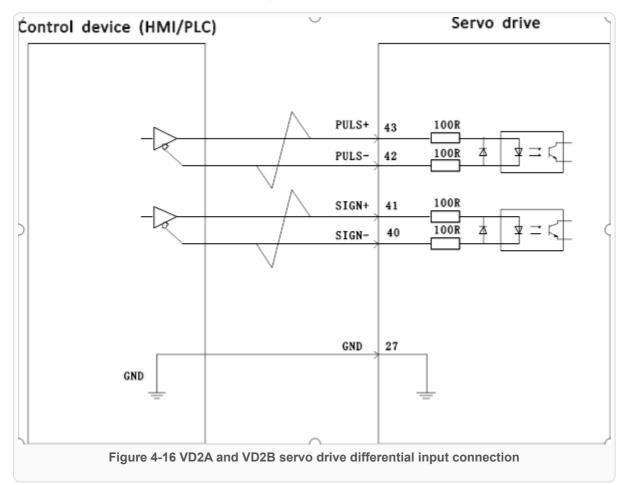
VD2F servo drive

Note: Please refer to "Table 4-15 CN2 interface definition of VD2F servo drive" for the pin numbers in the figure.

Position instruction input signal

Signal name	VD2A and VD2B pin number	VD2F pin number	Function

PULS+	43	12	Low-speed pulse input modes: differential input, open collector.
PULS-	42	13	There are three types of input pulse:
SIGN+	41	14	 Direction + pulse (positive logic); CW/CCW; A and B phase quadrature pulses (4 times
SIGN-	40	15	the frequency).
PL	44	11	External power input interface for instruction pulse.


Table 4-16 Position instruction signal description

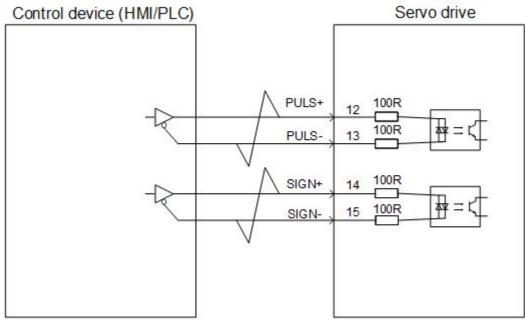
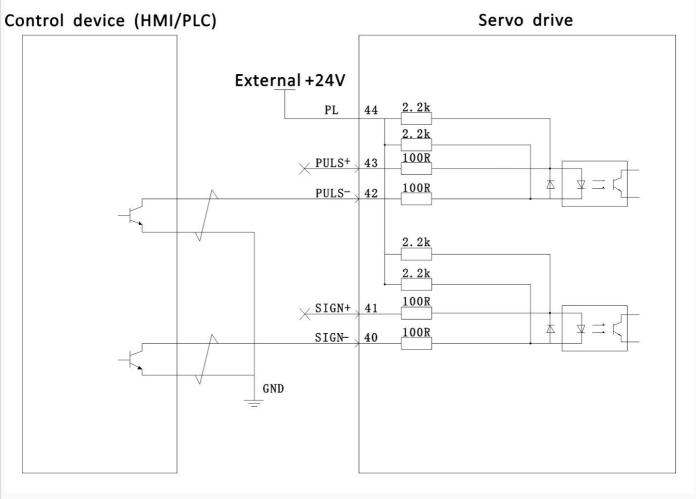
The instruction pulse and sign output circuit on the host device side can be selected from differential output or open collector output. The maximum input frequency is shown in the table.

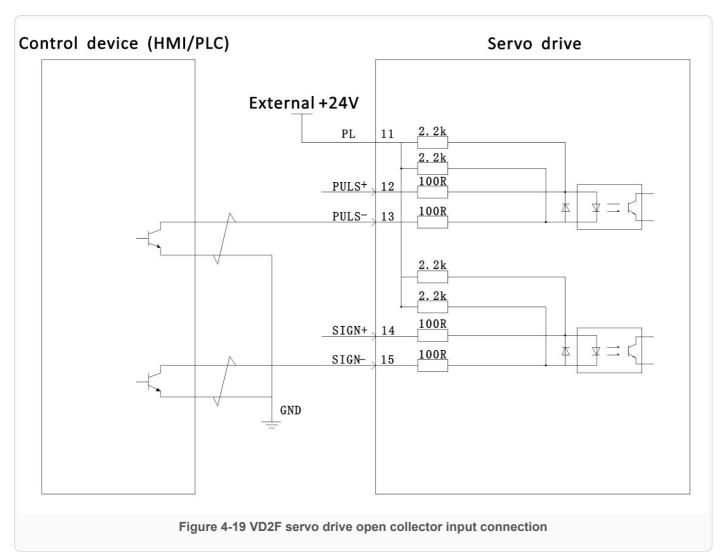
Pulse method	Difference	Open collector
Maximum frequency	500KHz	200KHz

Differential input

The connection of differential input is shown in Figure 4-9

04 Wiring


Figure 4-17 VD2F servo drive differential input connection

Open collector input

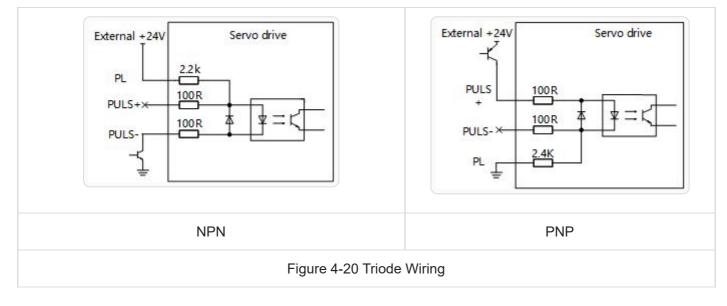
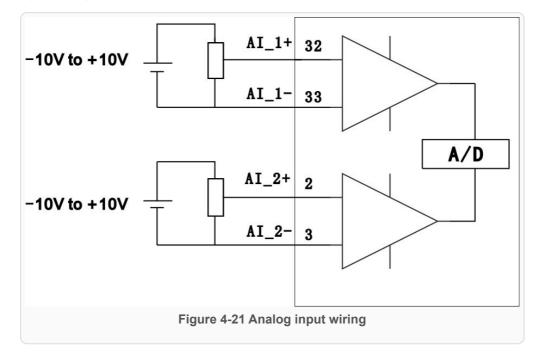

• Open collector input connection

Figure 4-18 VD2A and VD2B servo drive open collector input connection

• NPN and PNP wiring


Analog input signal

The analog input signal is only supported by VD2A and VD2B servo drives.

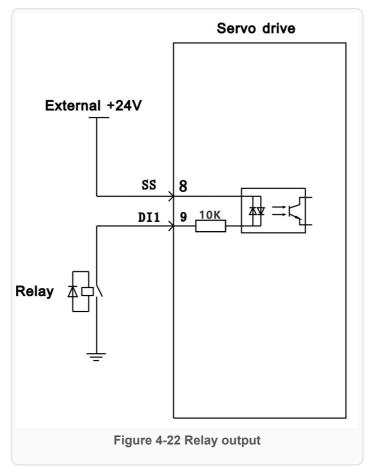
Pin number	Signal name	Function

32	Al_1+	AI_1 analog input signal, resolution 12-bit.
33	AI_1-	Input voltage range: -10V to +10V.
2	AI_2+	AI_2 analog input signal, resolution 12-bit.
3	AI_2-	Input voltage range: -10V to +10V.
17	GND	Analog input signal ground.
34	GND	

Table 4-17 Analog input signal description

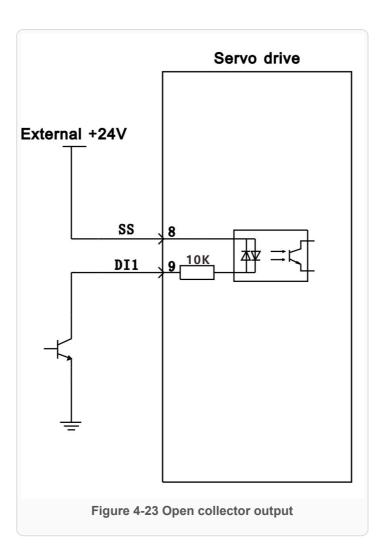
Digital input&output signals

VD2A and VD2B servo drives


Pin number	Signal name	Default function
9	DI1	Servo enable
10	DI2	Faults and alarms clearance
11	DI3	Forward drive prohibited
12	DI4	Reverse drive prohibited
23	DI5	Inverted instruction
24	DI6	Instruction pulse prohibited input
25	DI7	Not used

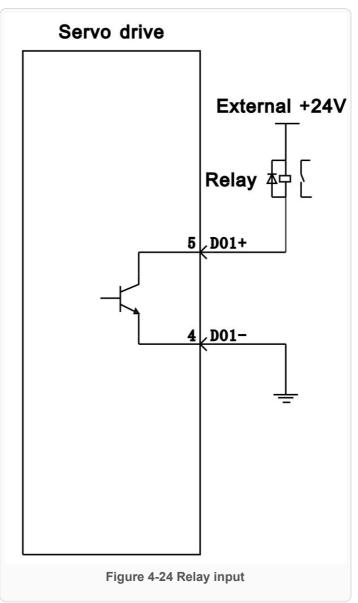
Not used	DI8	26
24V	SS	8
Rotation detection	DO1-	4
	DO1+	5
Faults signal	DO2-	6
	DO2+	7
Sonio is roadu	DO3-	19
Servo is ready	DO3+	20
Positioning completed	DO4-	21
Positioning completed	DO4+	22

Table 4-18 DI/DO signal description

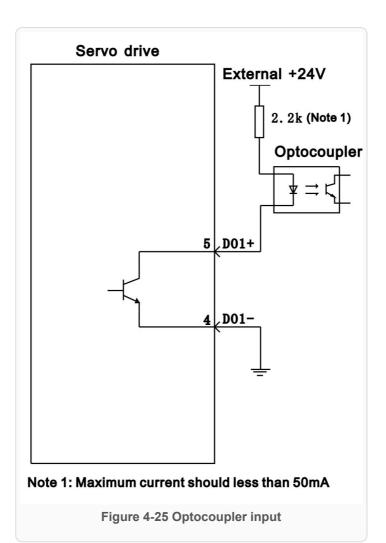

Digital input circuit

• When the control device (HMI/PLC) is relay output

• When the control device (HMI/PLC) is open collector output


04 Wiring

Digital output circuit

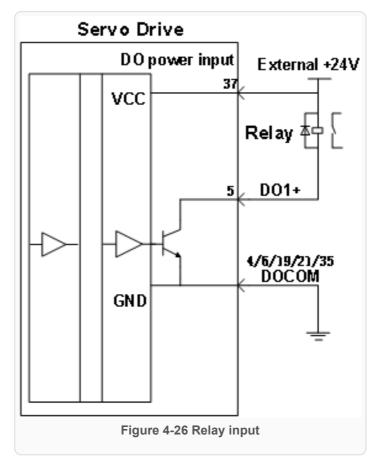

• When the control device (HMI/PLC) is relay input

04 Wiring

• When the control device (HMI/PLC) is optocoupler input

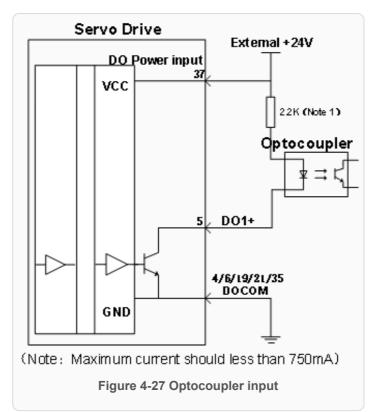
04 Wiring

VD2-0xxSA1H servo drives


Pin number	Pin name	Default function
9	DI1	Servo enable
10	DI2	Fault and alarm clearance
11	DI3	Forward drive prohibited
12	DI4	Reverse drive prohibited
23	DI5	Inverted command
24	DI6	command pulse prohibited input
25	DI7	Not used
26	DI8	Not used
8	SS	Power input (24V)
5	DO1+	Fault signal
7	DO2+	Pulse frequency division output (Z phase)

20	DO3+	Pulse frequency division output (A phase)
22	DO4+	Pulse frequency division output (B phase)
4/6/19/21/35	DOCOM	DO Power Common (0V)
37	24V+	DO power input (24V)

Table 4-19 DI/DO signal description

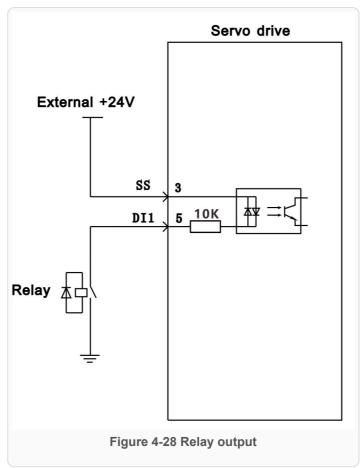

Digital output circuit

• When the control device(HMI/PLC) is relay input

• When the control device (HMI/PLC) is optocoupler input

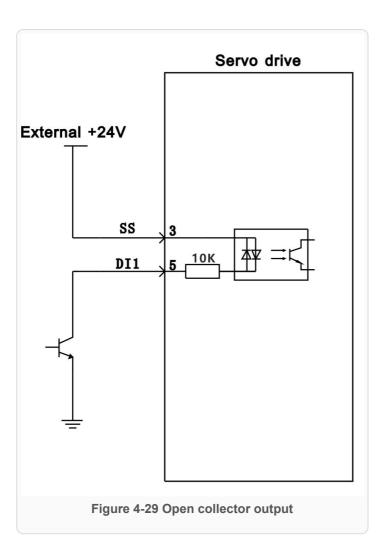
04 Wiring

The digital output circuit wiring of VD2-0xxSA1H Servo Drive is different from that of VD2A and VD2F servo drives. VD2-0xxSA1H needs to be connected to external 24V DC power supply. (CN2_35 pin and CN2_37 pin are connected to COM0 and 24V+ of external 24V power supply respectively). If the access current is too large and the DOCOM line is relatively thin, servo drives need to access multiple DOCOM to achieve the shunt effect.


VD2F servo drive

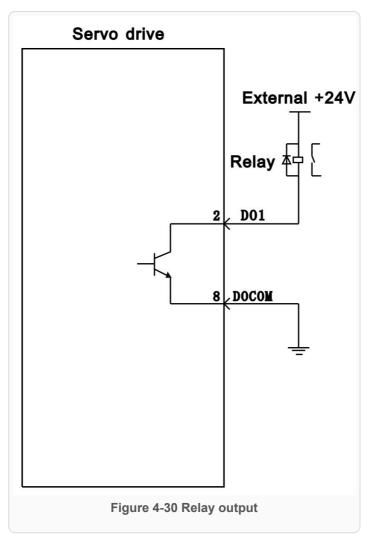
Pin number	Pin name	Default function
5	DI1	Servo enable
10	DI2	Faults and alarms clearance
4	DI3	Forward drive prohibited
9	DI4	Reverse drive prohibited
3	SS	24V
2	DO1	Rotation detection
7	DO2	Fault signal
1	DO3	Servo is ready
6	DO4	Positioning completed
8	DOCOM	Do common terminal

Table 4-20 DI/DO signal description

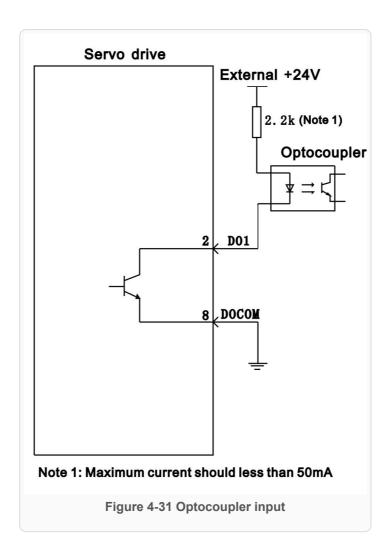

Digital input circuit

• When the control device (HMI/PLC) is relay output

• When the control device (HMI/PLC) is open collector output


04 Wiring

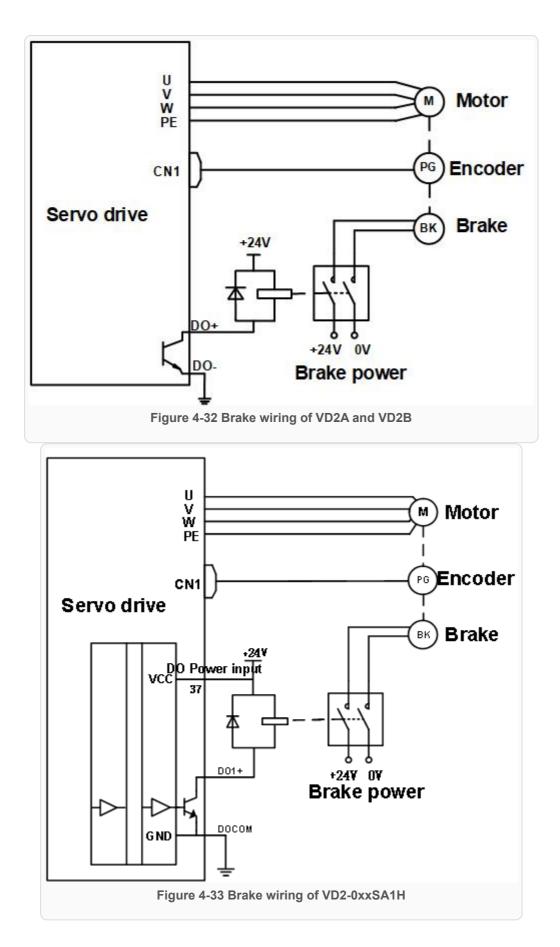
Digital output circuit


• When the control device (HMI/PLC) is relay input

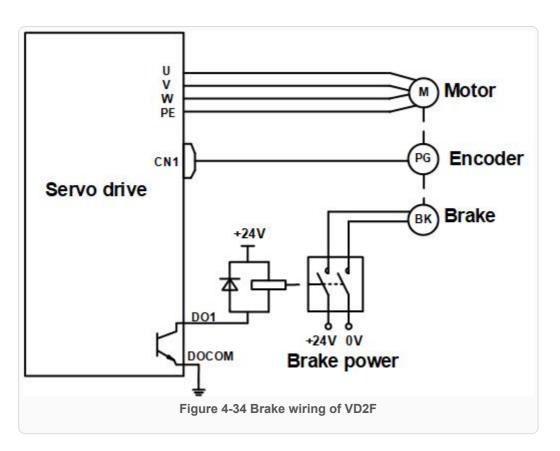
04 Wiring

• When the control device (HMI/PLC) is optocoupler input

04 Wiring



Brake wiring


The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a nonrunning state, so that the motor remains in position lock so that the moving part of the machinery will not move due to self-weight or external force.

The brake input signal is no polar. You need to use 24V power. The standard wiring between brake signal BK and brake power is as below.

04 Wiring

Communication signal wiring

We con VD2 series servo drive supports two communication modes: RS-422 and RS-485. The communication port is RJ45 socket. The exterior of communication terminal is shown in Figure 4-31

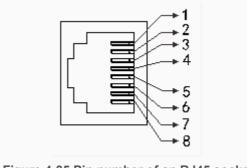


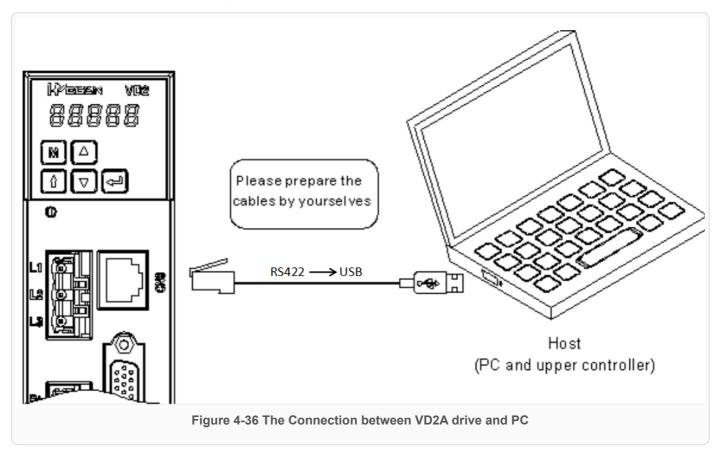
Figure 4-35 Pin number of an RJ45 socket

The communication modes supported by the driver communication ports are in the following table.

VD2 A&VD2 B		VD2F		
Port	Communication mode	Port	Communication mode	
CN3	Only RS422	CN3	RS422, RS485 communication mode choose one of	
CN5	Only RS485	CN4	two. Set by function code P12-05 CN4	
CN6		Note : The CN3 and CN4 interfaces are physically connected and are actually the same communication interface. When P12-		
Note : The CN5 and CN6 interfaces are physically connected and are actu-		05 is set	05 is set to 1, CN3 and CN4 use RS485 communication mode. If the value is set to 0, both use RS422 communication mode.	

72 / 402

ally the same communication interface.


 Table 4-21 Communication port communication modes

Communication connection with servo host computer (RS422)

Servo drives communicate with the host computer via RS422 communication. A USB to RS422 (RJ45 connector) cable is required for communication, and you need to equip it by yourselves.

• VD2A&VD2B

VD2A and VD2B servo drives communicate with the host computer via the CN3 interface by RS422 communication. Figure 4-36 and Figure 4-37 show the communication connections.

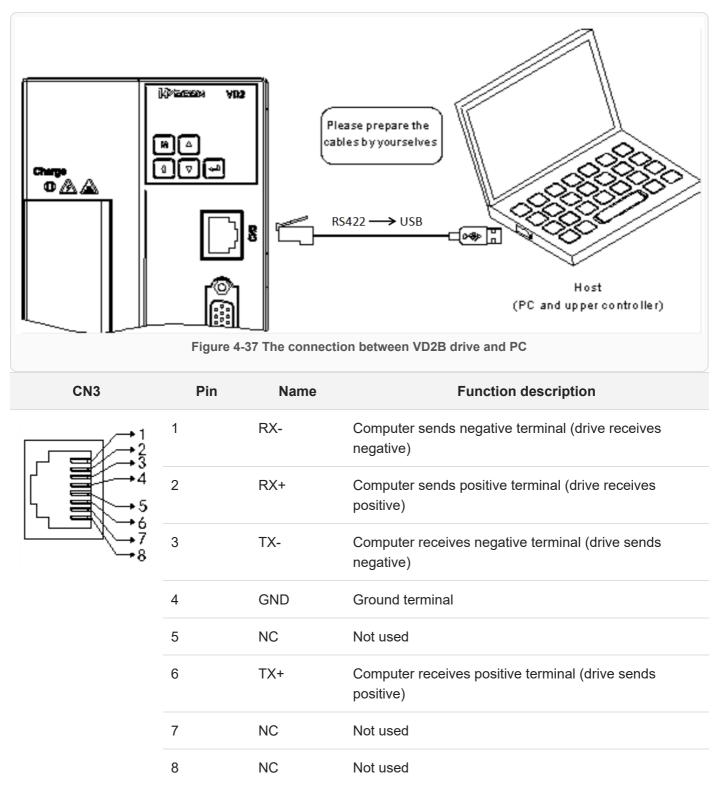
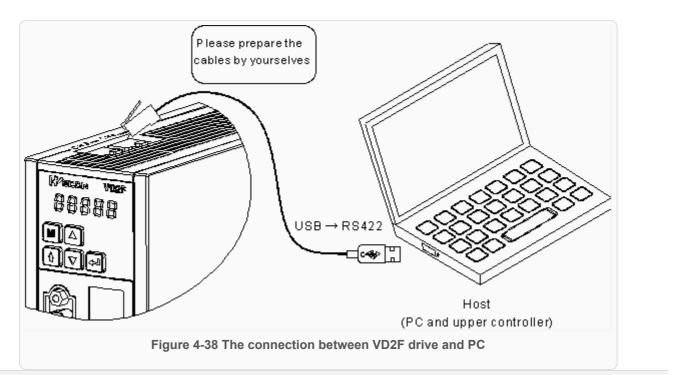



Table 4-22 VD2A and VD2B pin definitions for CN3

• VD2F

VD2F servo drive communicates with the host computer via the CN3 or CN4 interface byRS422 communication. The communication diagrams of VD2F servo drive and host computer are shown in Figure 4-38.

04 Wiring

CN3&CN4	Pin	Name	Function description
	1	RX-	Computer sends negative terminal (drive receives negative)
	2	RX+	Computer sends positive terminal (drive receives positive)
	3	TX-	Computer receives negative terminal (drive sends negative)
	4	GND	Ground terminal
	5	NC	Not used
	6	TX+	Computer receives positive terminal (drive sends positive)
	7	NC	Not used
	8	NC	Not used

Table 4-23 VD2F pin definitions for CN3/CN4 interfaces

Communication connection with PLC and other device (RS485)

VD2A and VD2B servo drives communicate with PLC and other devices for Modbus via CN5 or CN6 interface (located on the top of servo drive) by RS485 communication.

CN5&CN6	Pin	Name	Function description
	1	485-	Computer sends negative terminal (drive receives negative)

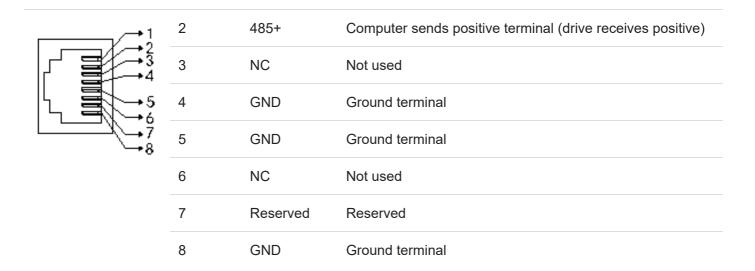


Table 4-24 VD2A and VD2B pin definition of CN5/CN6 interface

VD2F servo drives communicate with PLC and other devices for Modbus via CN3 or CN4 interface (located on the top of servo drive) by RS485 communication.

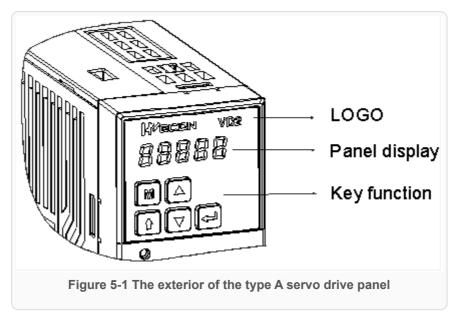

CN3&0	CN4	Pin	Name	Function description
	1	485-	Computer sends negative terminal (drive receives negative)	
		2	485+	Computer sends positive terminal (drive receives positive)
		3	-	Computer receives negative terminal
	\ →8	4	GND	Ground terminal
		5	-	Not used
		6	-	Computer receives positive terminal
		7	-	Not used
		8	-	Not used

Table 4-25 VD2F pin definition of CN3/CN4 interfaces

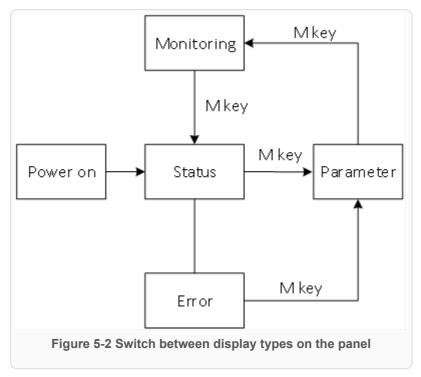
05 Panel

Panel composition

The panel composition of the VD2 series servo drive is shown in Figure 5-1 (take VD2A servo drive as an example).

The panel of the VD2 series servo drive consists of a display (5-digit LED nixie tube) and keys, which can be used for the execution of various displays, parameter settings and other functions of the servo drive. Taking parameter setting as an example, the general functions of the keys are shown in <u>Table 5-1</u>.

lcon	Name	Function		
	Mode	 Mode switching Return to the previous menu 		
	Increase	Increase the value of the LED flashing bit		
\Box	Decrease	Decrease the value of the LED flashing bit		
Û	SHIFT key	 Change the LED flashing bit View the high-bit value of data with a length greater than 4-bit 		
Į.	Enter (OK)	 Enter the next menu Execute commands such as storing parameter setting values 		


Table 5-1 key functions

Panel display

When servo drive is in operation, the panel could be used for status display, parameter display, fault display and monitoring display of the servo.

- Status display: Display the current operating status of servo drive.
- **Parameter display:** Display the function codes corresponding to different functions and the set values of the function codes.
- Fault display: Display the fault code of servo drive.
- **Monitor display:** Display the current operating parameter values of servo drive.

Display switching

Illustrate:

- 1. The power is turned on, and the panel display of the servo drive enters "Status Display Mode".
- 2. After an operation failure occurs, the panel immediately switches to the bit failure display mode. At this time, all the nixie tubes flash synchronously. Press the "mode" key to switch to the parameter display mode.
- 3. Press the "Mode" key to switch between different display modes, and the switching conditions are shown in <u>Figure 5-2</u>.

Status display

Display	Display occasion	Meaning
8.8.8.8.8.	Servo drive is powered on within 1 second	Servo drive is in initialization status
	Very short time after displaying	

	"88888"	Initialization is complete
rdy	1 second after servo drive is powered on, servo is ready	The servo is ready, waiting for the en- able signal given by servo drive
run	Servo enable signal is valid	The servo drive is in an operational status, waiting for the instructions from host computer
ual	Servo drive is in jog operation	Jog operation settings

Table 5-2 Status display example

Parameter display

VD2 series servo drives are divided into 13 groups of function codes according to different parameter functions, which could quickly locate the position of function codes according to the function code groups. For the specific parameters refer to <u>"9 Parameters"</u>.

Parameter group display

The parameter display is the display of different function codes. The format of the function code is "PXX.YY". "PXX" indicates the group number of function code, and "YY" indicates the number within the function code group.

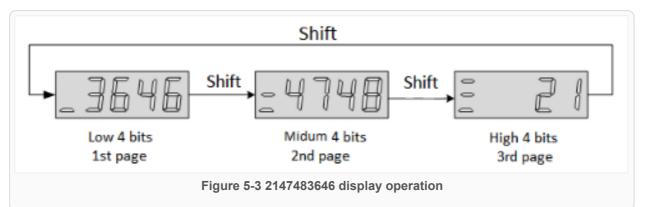
Display	Name	Content
PXX.YY	Function code group number	Number in function code group

For example: The function code P00.01 is displayed as follows.

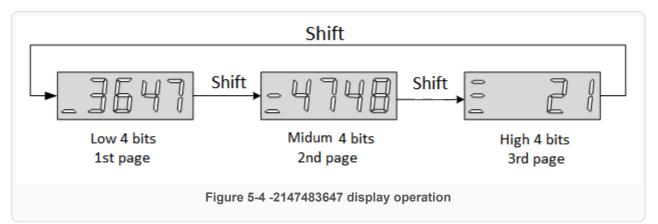
Display	Name	Content
POQ.O I	Function code P00.01	00: Function code group number01: Number in the function code group

Display of different length data

Display Data with four bits and below


- Using single page display, if it is a signed number, the highest bit of the data is "-".
- For example: The monitoring volume U0-02 is displayed as follows.

Display	Name	Content


Monitoring volume U0-02 Ser

Display Data more than five bits

- Display in pages from low to high bits, and each 4 bits is a page. Display method: current page + current value.as shown in <u>Figure 5-3</u> and <u>Figure 5-4</u>, switch current page by pressing the "Shift" key.
- For example: 2147483646 is displayed as follows:

Decimal point display

The "." of the one-digit indicates the decimal point, and it does not flash. The example is as follows.

Display	Name	Content
]]],	Decimal point	302.4

Parameter setting display

Display	Name	Display occasion	Meaning
donE	Done Parameter setting completed	Parameter reset factory	The servo drive is in the process of parameter factory reset
	D Init		

Parameter reset factory	Parameter reset factory	The servo drive is in the process of parameter factory reset
Error Parameter error	Parameter setting exceeds the limit (or not allowed to exceed the limit)	Prompt that the parameter setting exceeds the limit

Table 5-3 Parameter setting display

Fault display

The panel can display current or historical fault and warning codes. For analysis and troubleshooting of faults and warnings, please refer to <u>"10 Malfuctions"</u>.

When a single fault or warning occurs, the panel immediately displays the current fault or warning code;

when multiple faults or warnings occur, the highest fault code is displayed. When a fault occurs, when switching from the auxiliary function to the parameter display function, the corresponding fault or warning code will be displayed. You can view the current fault and warning codes and the past five fault and warning codes through the monitor display on the panel.

Display	Name	Content
A-84	Parameter modification that needs to be powered on again	Modified the parameters that need to be re- powered to take effect

Table 5-4 Warning display example

Display	Name	Content
	Motor overload protection	Motor overload protection

Table 5-5 Fault display example

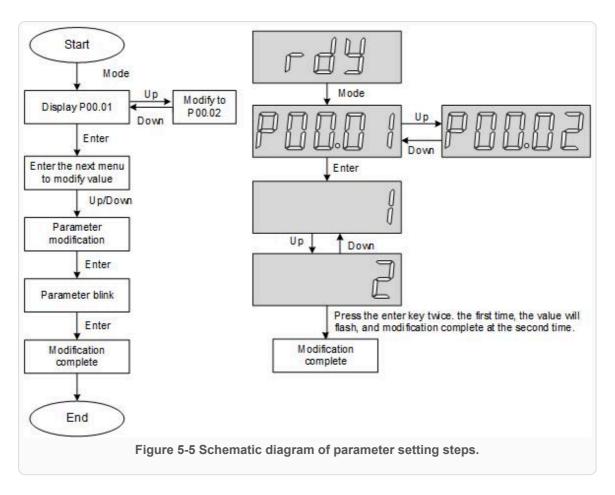
Monitor display

After the servo drive is powered on or the servo enable is ON, you can press the "Mode" key to enter the monitor display mode.

Display	Monitoring volume	Name	Unit	Meaning
		Servo motor		Indicates the actual operating speed of servo motor, expressed in decimal.
	U0-02	speed	rpm	

]]2.4	U0-31	Bus voltage	V	Indicates the voltage value between P+ and - of the drive, the DC bus voltage
DI8 DI6 DI4 DI2 DI7 DI5 DI3 DI1 DI7 DI5 DI3 DI1 DI6 DI3 DI1 DI7 DI5 DI3 DI1 DI6 DI3 DI1 DI7 DI5 DI3 DI1 DI6 DI4 DI2 DI7 DI5 DI3 DI1 DI6 DI5 DI3 DI1 DI6 DI6 DI4 DI2 DI7 DI5 DI3 DI1 DI6 DI6 DI4 DI2 DI7 DI5 DI3 DI1 DI6 DI5 DI3 DI1 DI6 DI6 DI4 DI2 DI7 DI5 DI5 DI3 DI1 DI6 DI6 DI4 DI2 DI7 DI5 DI5 DI3 DI1 DI6 DI6 DI6 DI4 DI2 DI7 DI5 DI5 DI3 DI1 DI6 DI6 DI6 DI6 DI4 DI2 DI6 DI6 DI6 DI6 DI6 DI6 DI6 DI6 DI6 DI6	U0-17	Input signal status	-	Indicates the level status corre- sponding to the 8 DI terminals. The upper half of the LED light indicates high level, and the lower half light indicates low level. (The VD2F model has only 4 DI ports)
DO4 DO2 DO3 DO1 DO3 DO1 high high low high 1 1 0 1	U0-19	Output signal status	-	Indicates the level status corre- sponding to the 4 DO terminals. The upper half of the LED light indi- cates high level, and the lower half light indicates low level.

Table 5-6 Monitoring volume display example

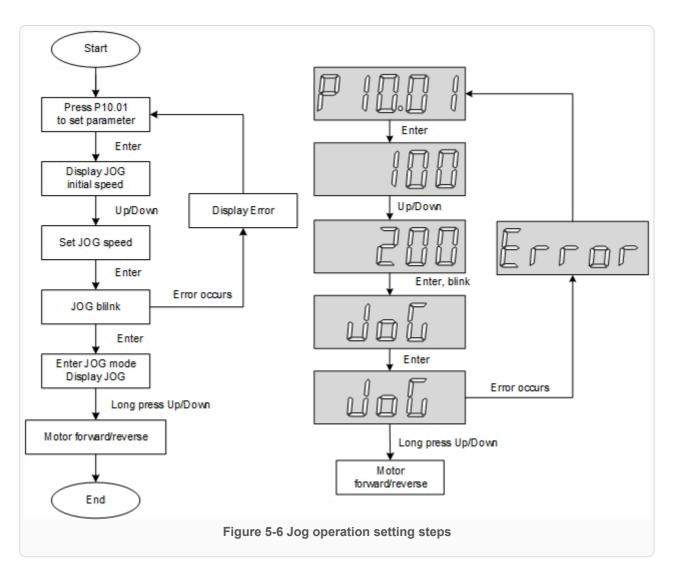

Panel operation

Parameter setting

Use the servo drive panel to set the parameters. For details about the parameters, please refer to <u>9</u> <u>Parameters</u>. Take P00.01 as an example to set the parameters to change the control mode of the servo drive from position control mode to speed control mode. The setting steps are shown in <u>Figure 5-5</u>.

Illustrate:

- The power supply is in Rdy state after power on.
- Press "Mode" key to enter the function code parameter interface.
- Press "Confirm" key to enter the function code value modification interface after completing the function code selection.
- Press the "Up" and "Down" keys to modify the parameter value.
- Press the "Confirm" key twice to complete the value modification.

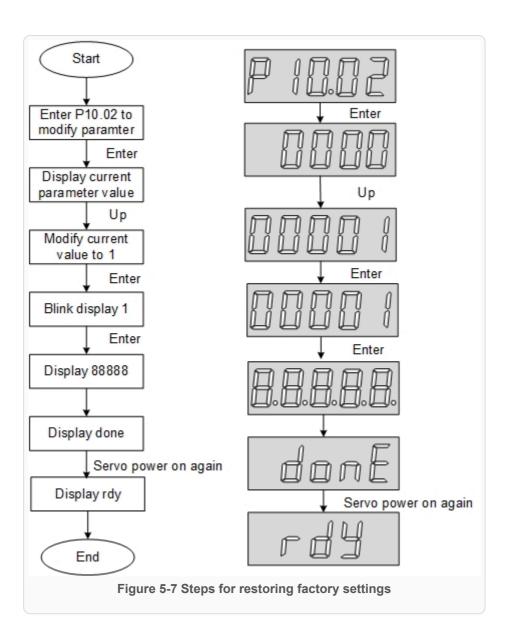


Jog operation

In order to test run the servo motor and the servo drive, you can use the jog running function. The operation steps are shown in <u>Figure 5-6</u>.

Illustrate:

- Adjust the function code to P10.01 after power on.
- Press the "Enter" key to enter the next menu to set the JOG jog speed.
- After the "JOG jog speed" setting is completed, press the "Enter" key, the panel displays "JOG" in a flashing state, press the "Enter" key again to enter the JOG mode.
- Long press the "Up" key and "Down" key to realize the forward and reverse rotation of the motor.
- Press the "Mode" key to exit the JOG mode.
- Reason for displaying Error: Please refer to <u>"10 Malfunctions"</u> according to the corresponding fault codes.


Factory reset

The factory settings can be restored through the servo drive panel. The specific operation steps are shown in <u>Figure 5-7</u>.

Illustrate:

- After power on, modify the function code to P10.02.
- Press the "Enter" key to enter the next menu to set the parameters.
- Press the "Confirm" button after the parameter setting is finished, and the setting value will flash.
- Press "Confirm" again, the panel digital tube will light up gradually from left to right until 8.8.8.8 is displayed.
- Finally it displays "Done", the servo drive will be re-powered and the operation of factory reset is finished.

05 Panel

06 Operation

Basic settings

Check before operation

No.	Content
	Wiring
1	The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
2	The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
3	The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
4	The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
5	Servo drive and servo motor must be grounded reliably.
6	When using an external braking resistor, the short wiring between drive C and D must be removed.
7	The force of all cables is within the specified range.
8	The wiring terminals have been insulated.
	Environment and Machinery
1	There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
2	The servo drive and external braking resistor are not placed on combustible objects.
3	The installation, shaft and mechanical structure of the servo motor have been firmly connected.

Table 6-1 Check contents before operation

Power-on

Connect the main circuit power supply

After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.

If the drive panel displays other fault codes, please refer to <u>"10 Malfunctions"</u>" to analyze and eliminate the cause of the fault.

Set the servo drive enable (S-ON) to invalid (OFF)

Jog operation

Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.

Panel jog operation

Enter "P10-01" by pressing the key on the panel. After pressing "OK", the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to "5.3.2. Jog operation" [].

Jog operation of servo debugging platform

Open the jog operation interface of the software "Wecon SCTool", set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.

Function code	Name	Setting method	Effective time	Default value	Range	Definitio n	Uni t
P10-01	JOG speed	Operation setting	Effective immediately	100	0 to 3000	JOG speed	rp m

Table 6-2 JOG speed parameter

Rotation direction selection

By setting the "P00-04" rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.

Functio code	n Name	Setting method	Effective time	Default value	Ra ng e	Definition	U ni t
P00-04	Rotation direction	Shutdown setting	Effective immediately	0	0 to 1	 Forward rotation: Face the motor shaft to watch 0: standard setting (CW is forward rotation) 1: reverse mode (CCW is forward rotation) 	-

Braking resistor

The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.

The basis for judging whether the braking resistor is built-in or external.

- 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
- 2. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.

Functio n code	Name	Sett ing met hod	Effe ctiv e time	Def aul t	Ran ge	Definition	U ni t
P00-09	Braking resistor setting	Ope ra- tion set- ting	Effe ctive im- me- di- ately	0	0 to 3	 0: use built-in braking resistor 1: use external braking resistor and natural cooling 2: use external braking resistor and forced air cooling; (cannot be set) 3: No braking resistor is used, it is all absorbed by capacitor. 	-

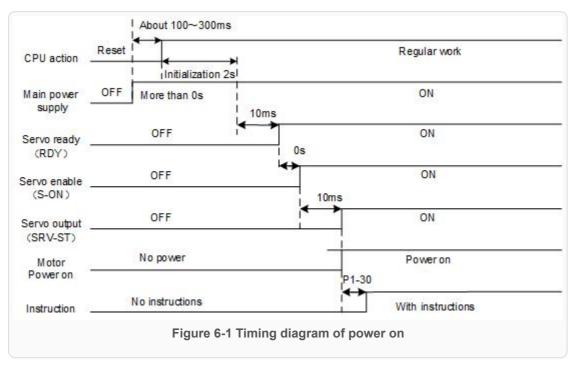
Note: VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code "P00-09" is 3 (No braking resistor is used, it is all absorbed by capacitor).

P00-10	External braking resistor value	Ope ra- tion set- ting	Effe ctive im- me- di- ately	50	0 to 6553 5	It is used to set the external braking resistor value of a certain type of drive.	Ω
P00-11	External braking resistor power	Ope ra- tion set- ting	Effe ctive im- me- di- ately	10 0	0 to 6553 5	It is used to set the external braking resistor power of a certain type of drive.	W

Table 6-4 Braking resistor parameters

Servo operation

Set the servo enable (S-ON) to valid (ON)


The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.

S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".

Input the instruction and the motor rotates

Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to <u>"7 Adjustment"</u>, the motor could work as expected.

Timing diagram of power on

Servo shutdown

According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in <u>Table 6-5</u>. According to the shutdown status, it could be divided into free running state and position locked, as shown in <u>Table 6-6</u>.

Shutdown mode	Shutdown description	Shutdown characteristics		
Free shutdown	Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.	Smooth deceleration, small mechani- cal shock, but slow deceleration process.		
Zero-speed shutdown	The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.	Rapid deceleration with mechanical shock, but fast deceleration process.		

Table 6-5 Comparison of two shutdown modes

Shutdown status	Free operation status	Position locked
Characterist ics	After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.	After the motor stops rotating, the mo- tor shaft is locked and could not rotate freely.

Table 6-6 Comparison of two shutdown status

Servo enable (S-ON) OFF shutdown

The related parameters of the servo OFF shutdown mode are shown in the table below.

Fu nc tio n co de	Name	Sett ing met hod	Effe ctive time	D ef ul t v al u e	R n g e	Definition	Unit
P0 0- 05	Servo OFF shut- down	Shu tdo wn set- ting	Effec tive im- me- di- ately	0	0 t 0 1	 0: Free - shutdown, and the motor shaft remains free status. 1: Zero- speed shutdown, and the motor shaft remains free status. 	

Table 6-7 Servo OFF shutdown mode parameters details

Emergency shutdown

It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.

Estop mode 1 (deceleration stop):

- 1. Configurate DI function code: 8 [ESTOP]
- 2. Set P1-5 shutdown deceleration time.
- 3. Trigger DI emergency shutdown.
- 4. Servo emergency shutdown and deceleration to zero speed.

Estop mode 2:

- 1. Configurate DI function code: 1 [Servo enable SON]
- 2. Set P1-05 shutdown deceleration time.
- 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
- 4. Trigger DI to turn off servo enable SON.

Functio n code	Name	Setti ng meth od	Effecti ve time	Def ault	Rang e	Definition	U ni t
P01-05	Shutdown decel- eration time	Shut down set- ting	imme- diately Effecti ve	50	0 to 6553 5	The time for the speed command to de- celerate from 1000rpm to 0	m s

Overtravel shutdown

Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.

Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.

The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.

F	Nam	Sett	Eff	Def	R	Definition	Unit
u	е	ing	ec-	aul	а		
nc		met	tive	t	n		
ti		hod	tim	val	g		
ο			е	ue	е		
n							
со							
de							
Ρ							
06							

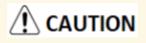
			 14: INSPD2 Internal speed in- struction se- lection 2 15: INSPD3 Internal speedin- struction se- lection 3 16: J-SEL in- ertia ratio switch (not implemented yet) 17: MixModesel mixed mode selection 20: Internal multi-seg- ment position enable signal 21: Internal multi-seg- ment position selection 1 22: Internal multi-seg- ment position selection 2 23: Internal multi-seg- ment position selection 3 24: Internal multi-seg- ment position selection 4 Others: reserved 	
Ρ	DI_3 Ope	Effe		

P DI_3 Ope E	ffe
06 chan ra- c	tiv
-0 nel tion e	
9 logic set- in	n-
se- ting m	ne-
lec- d	ia-
tion te	əl-

			У	0	0 to 1	DI port input logic - validity function selection. • 0: Normally open input. Active low level (switch on); • 1: Normally closed input. Active high level (switch off);
P 06 -1 0	DI_3 input sour ce se- lec- tion	Ope ra- tion set- ting	Effe ctiv e im- me- di- atel y	0	0 to 1	Select the DI_3 - port type to enable • 0: Hardware DI_3 input terminal • 1: virtual VDI_3 input terminal
P 06 -1 1	DI_4 chan nel func- tion se- lec- tion	Ope ra- tion set- ting	aga in Po wer -on	4	0 to 3 2	 0: OFF (not used) 01: SON Servo enable 02: A-CLR Fault and Warning Clear 03: POT Forward drive prohibition 04: NOT Reverse drive prohibition 05: ZCLAMP Zero speed 06: CL Clear deviation counter 07: C-SIGN Inverted instruction

- 08: E-STOP Emergency shutdown • 09: GEAR-SEL Electronic Gear Switch 1 • 10: GAIN-SEL gain switch • 11: INH Instruction pulse prohibited input • 12: VSSEL Vibration control switch input • 13: INSPD1 Internal speed instruction selection 1 • 14: INSPD2 Internal speed instruction selection 2 • 15: INSPD3 Internal speed instruction selection 3 • 16: J-SEL inertia ratio switch (not implemented yet) • 17: MixModesel mixed mode selection • 20: Internal multi-segment position enable signal
- 21: Internal multi-seg-

						 ment position selection 1 22: Internal multi-seg- ment position selection 2 23: Internal multi-seg- ment position selection 3 24: Internal multi-seg- ment position selection 4 Others: reserved
P 06 -1 2	DI_4 chan nel logic se- lec- tion	Ope ra- tion set- ting	Effe ctiv e im- me- di- atel y	0	0 to 1	DI port input logic - validity function selection. • 0: Normally open input. Active low level (switch on); • 1: Normally closed input. Active high level (switch off);
P 06 -1 3	DI_4 input sour ce se- lec- tion	Ope ra- tion set- ting	Effe ctiv e im- me- di- atel y	0	0 to 1	Select the DI_4 - port type to enable • 0: Hardware DI_4 input terminal • 1: virtual VDI_4 input terminal


Table 6-8 DI3 and DI4 channel parameters

(4) Malfunction shutdown

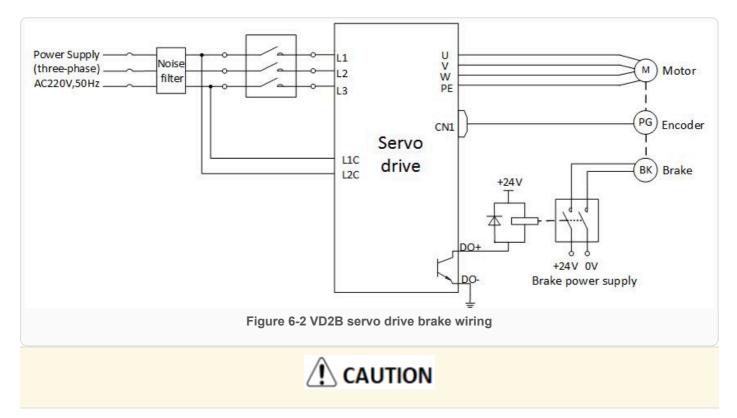
When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.

Brake device

The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a nonoperating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.

The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;

After the servo motor stops, turn off the servo enable (S-ON) in time;


The brake coil has no polarity;

Note: When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!

Note the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.

Wiring of brake device

The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)

The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.

• It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.

♦ It is recommended to use cables above 0.5 mm².

Brake software setting

For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.

Related function code is as below.

DO function code	Function name	Function	Effectiv e time
141	BRK-OFF Brake output	Output the signal indi- cates the servo motor brake release	Power- on again

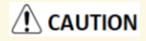
Table 6-2 Relevant function codes for brake setting

Fu nc- tio n co de	Name	Set tin g me tho d	Effe ctiv e time	D ef au It va Iu e	R a n g e	Definition	U n it
P1 -30	Delay from brake output to instruc- tion reception	Op er- atio n set- ting	Effec tive im- me- di- ately	25 0	0 t 5 0	Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.	m s
P1 -31	In static state, delay from brake output OFF to the motor is power off	Op er- atio n set- ting	Effec tive im- me- di- ately	15 0	1 t 1 0 0 0	When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive en- ters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	m s
P1 -32	Rotation status, when the brake output OFF, the speed threshold	Op er- atio -					

06 Operation

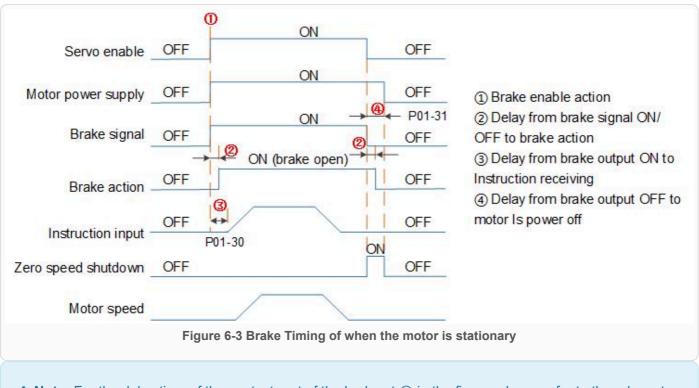
		n set- ting	Effec tive im- me- di- ately	30	0 t 3 0 0	When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. When the brake output (BRK-OFF) is not allocated, this function code has no effect.	r p m
P1 -33	Rotation status, Delay from servo enable OFF to brake output OFF	Op er- atio n set- ting	Effec tive im- me- di- ately	50 0	1 t 0 1 0 0	When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed. When brake output (BRK-OFF) is not allocated, this function code has no effect.	m s

Table 6-9 Brake setting function codes


According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.

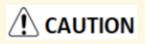
Servo drive brake timing in normal state

The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).


· Brake timing when servo motor is stationary

When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in <u>Figure 6-3</u>

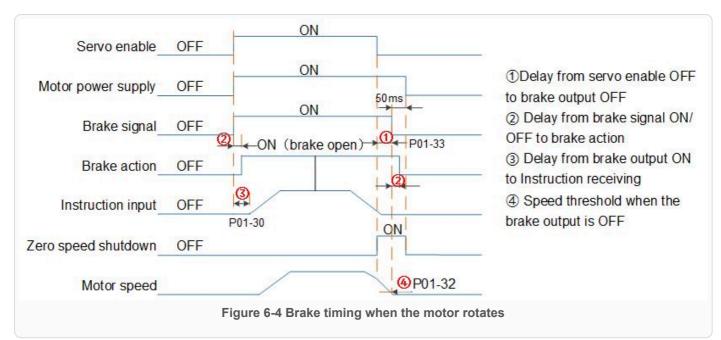
After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.


Note: When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.

Note: For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.

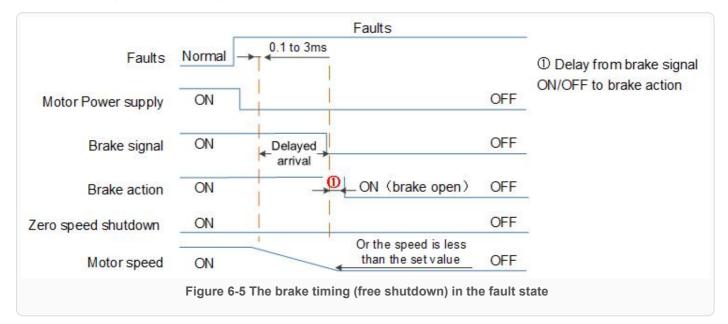
• The brake timing when servo motor rotates

When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in <u>Figure 6-4</u>.


Note: When the serve enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.

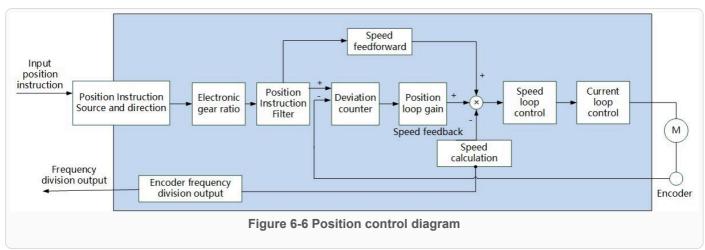
Note: When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:

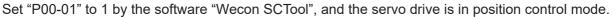
P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;


P01-33 time is up, but the motor speed is still higher than the set value of P01-32.

After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.

Brake timing when the servo drive fails


The brake timing (free shutdown) in the fault status is as follows.



Position control mode

Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.

06 Operation

Fun ctio n cod e	Nam e	Setting method	Effective time	Default value	Rang e	Definition	Uni t
P00 -01	Cont rol mod e	Operation setting	immediately Effective	1	1 to 6	 position control speed control torque control position/speed mix control position/torque mix control speed /torque mix control 	-

Table 6-10 Control mode parameters

Position instruction input setting

When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code "P01-06".

Function code	Name	Setting method	Effective time	Default value	Ran ge	Definition	U ni t
P01-06	Position instruc- tion source	Operation setting	immediately Effective	0	0 to 1	0: pulse instruction 1: internal position instruction	-

Table 6-11 Position instruction source parameter

The source of position instruction is pulse instruction (P01-06=0)

Low-speed pulse instruction input

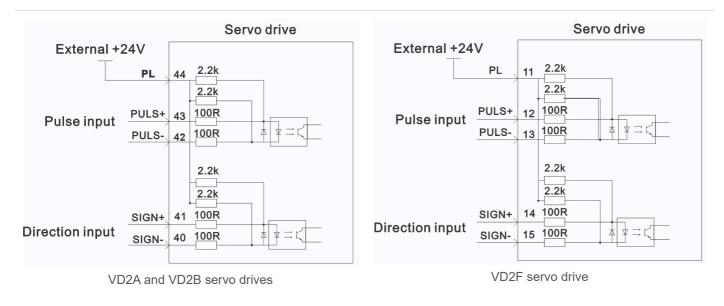
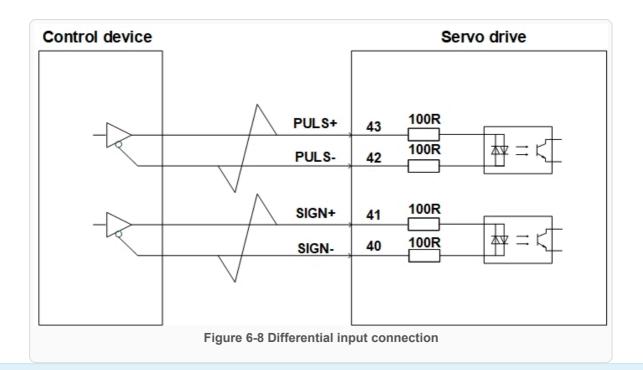


Figure 6-7 Position instruction input setting

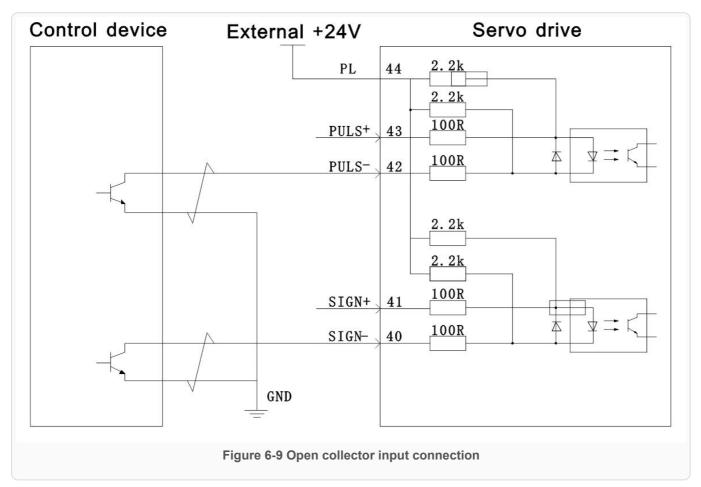
VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in <u>Figure 6-7</u>.


The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.

Pulse method	Maximum frequency	Voltage
Open collector input	200K	24V
Differential input	500K	5V

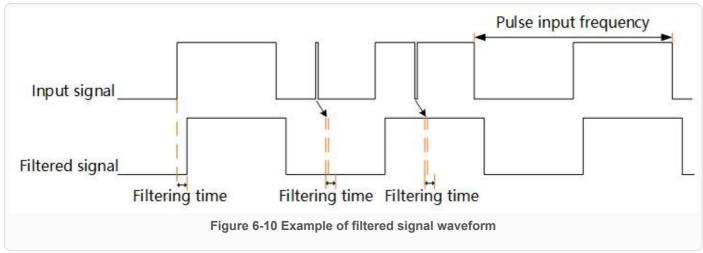
Table 6-12 Pulse input specifications

• Differential input


Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.

Note: The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to "<u>4.4.3 position instruction input signal</u> "

Open collector input


Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.

Note: The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to "4.4.3 position instruction input signal **C**"

• Position pulse frequency and anti-interference level

When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.

The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code "P00-13". If the actual input frequency is greater than the set value of "P00-13", it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code "P00-14", the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.

Function code	Name	Setti ng meth	Effective time	Default value	R a n	Definition	U nit
		od			g e		

P00-13	Maxim um po- sition pulse fre- quency	Shutd own set- ting	Effective immediately	300	1 to 50 0	Set the maximum frequency of ex- ternal pulse instruction	K Hz
P00-14	Positio n pulse anti-in- terfer- ence level	Oper ation set- ting	Power-on again	2	0 to 9	Set the anti-interference level of external pulse instruction. • 0: no filtering; • 1: Filtering time 128ns • 2: Filtering time 256ns • 3: Filtering time 512ns • 4: Filtering time 1.024us • 5: Filtering time 2.048us • 6: Filtering time 4.096us • 7: Filtering time 8.192us • 8: Filtering time 16.384us • 9: • VD2: Filtering time 25.5us • VD2F: Filtering time 25.5us	-

Table 6-13 Position pulse frequency and anti-interference level parameters

• Position pulse type selection

In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.

Function code	Nam e	Set tin g me tho d	Eff ec- tiv e tim e	D f a lt v al u e	R a g e	Definition Unit	
P00-12	Positi on pulse type se- lec- tion	Op er- atio n set- ting	Po wer -on aga in	0	0 t o 5	 0: direction + pulse (positive logic) 1: CW/CCW 2: A, B phase quadrature pulse (4 times 	

frequency)	_
3: Direction +	
pulse (negative	
logic)	
4: CW/CCW	
(negative logic)	
5: A, B phase	
quadrature	
pulse (4 times	
frequency neg-	
ative logic)	
	3: Direction + pulse (negative logic) 4: CW/CCW (negative logic) 5: A, B phase quadrature pulse (4 times frequency neg-

Table 6-14 Position pulse type selection parameter

Pulse type selection	Pulse type	Signal	Schematic diagram of forward pulse	Schematic diagram of negative pulse
0	Direction + pulse (Positive logic)	PULS E SIGN	PULSE	PULSELow
1	CW/CC W	PULS E (CW) SIGN (CCW)	cw ccw	
2	AB phase orthogo- nal pulse (4 times fre- quency)	PULS E (Phas e A) SIGN (Phas e B)	PULSESIGN SIGN Phase A is 90° ahead of Phase B	PULSE
3	Direction + pulse (Negativ e logic)	PULS E SIGN	PULSE Low	PULSE
4	CW/CC W			

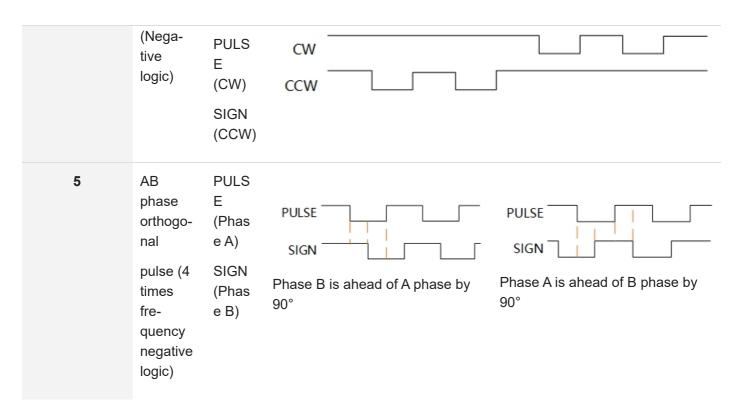
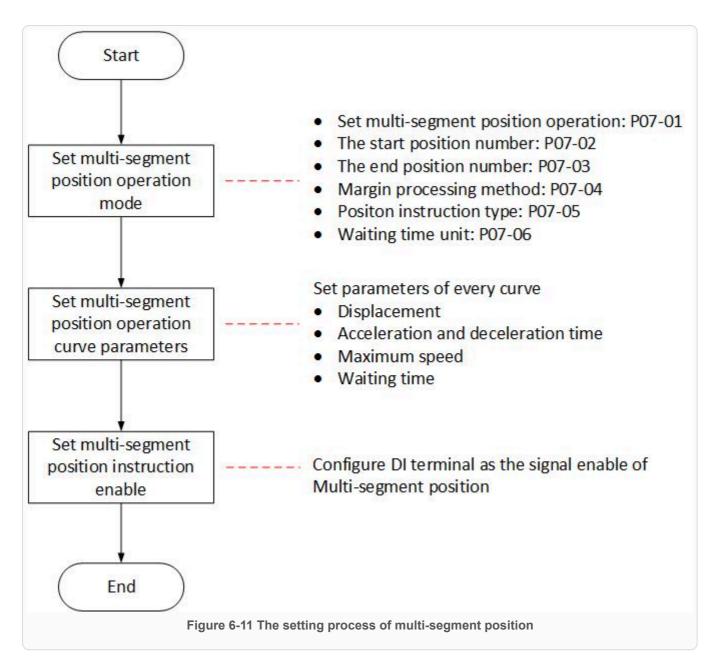



Table 6-15 Pulse description

The source of position instruction is internal position instruction (P01-06=1)

The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in <u>Figure 6-</u> <u>11</u>.

The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.

• Set multi-segment position running mode

Functio n code	Name	Setting method	Effective time	Default value	Ra ng e	Definition	U n it
P07-01	Multi-segment posi- tion running mode	Shutdow n setting	Effective immediately	0	0 to 2	 0: Single running 1: Cycle running 2: DI switching running 	-
P07-02	Start segment number	Shutdow n setting	Effective immediately	1	1 to 16	1st segment NO. in non- DI switching mode	-
P07-03	End segment number	Shutdow n setting	Effective immediately	1	1 to		

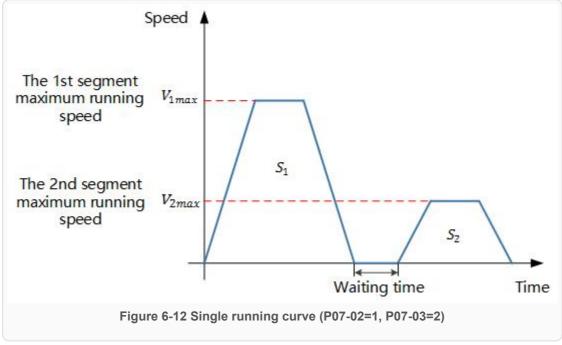
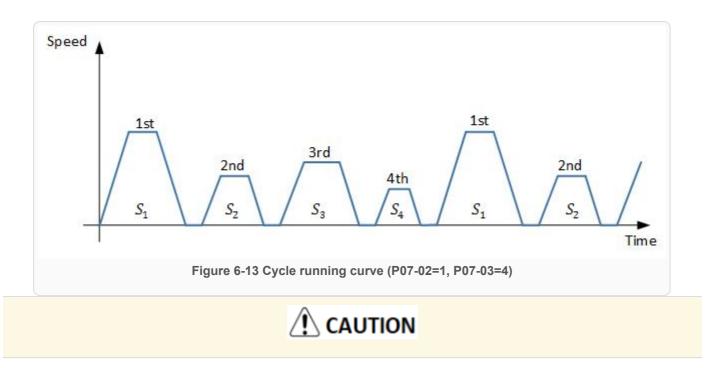

					16	last segment NO. in non- DI switching mode	-
P07-04	Margin processing method	Shutdow n setting	Effective immediately	0	0 to 1	0: Run the remaining segments1: Run again from the start segment	-
P07-05	Displacement instruc- tion type	Shutdow n setting	Effective immediately	0	0 to 1	 0: Relative position instruction 1: Absolute position instruction 	-

Table 6-16 multi-segment position running mode parameters

VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.


1. Single running

In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in <u>Figure 6-12</u>, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively

• 2. Cycle running

In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in Figure 6-13^{III}, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.

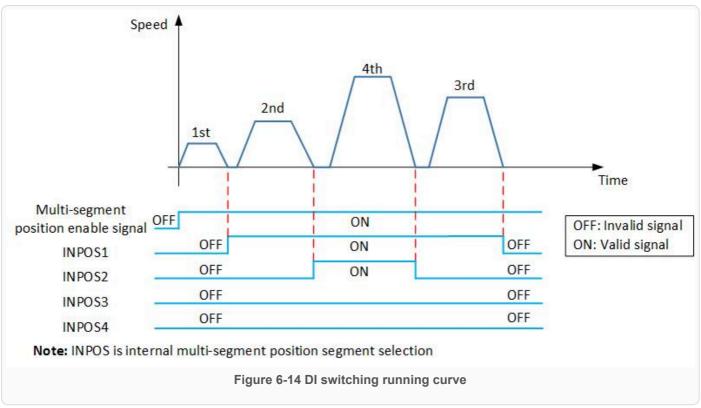
In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.

3. DI switching running

In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.

DI function code	Function name	Function
21	INPOS1: Internal multi-segment position seg- ment selection 1	Form internal multi-segment position running segment number
22	INPOS2: Internal multi-segment position seg- ment selection 2	Form internal multi-segment position running segment number
23	INPOS3: Internal multi-segment position seg- ment selection 3	Form internal multi-segment position running segment number
24	INPOS4: Internal multi-segment position seg- ment selection 4	Form internal multi-segment position running segment number

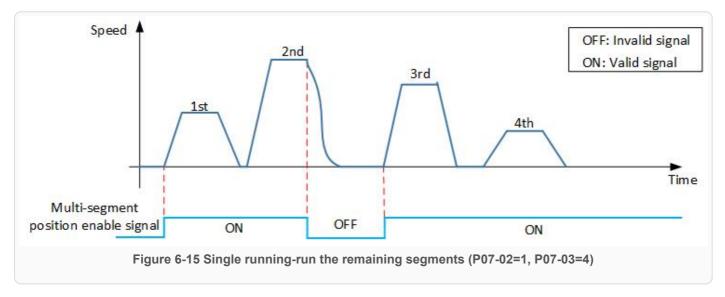
Table 6-17 DI function code

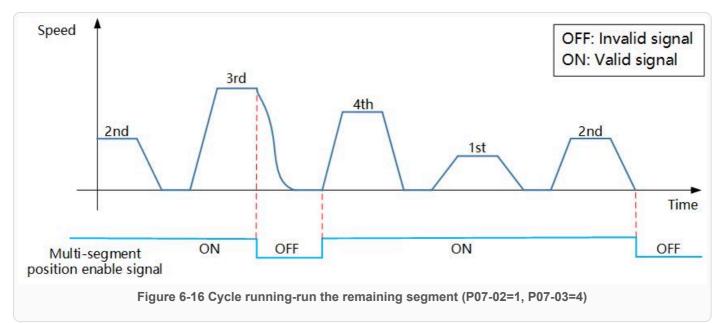

The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.

INPOS4	INPOS3	INPOS2	INPOS1		Running position number
0	0	0	0	1	

0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

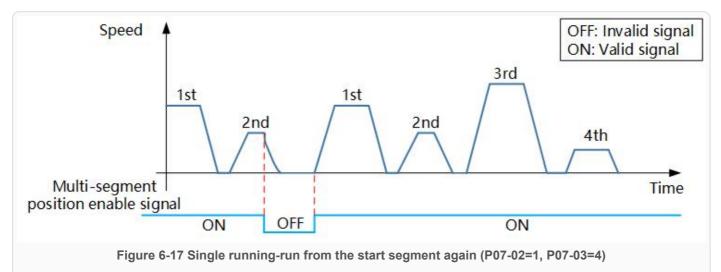
Table 6-18 INPOS corresponds to running segment number

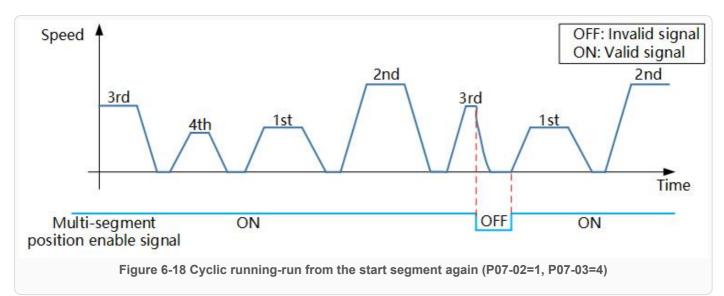

The operating curve in this running mode is shown in Figure 6-14.



VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.

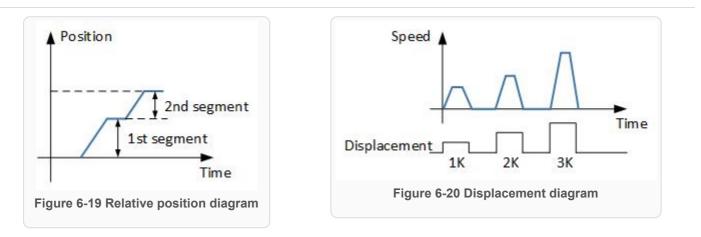
Run the remaining segments


In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in Figure 6-15^T and Figure 6-16^T respectively.

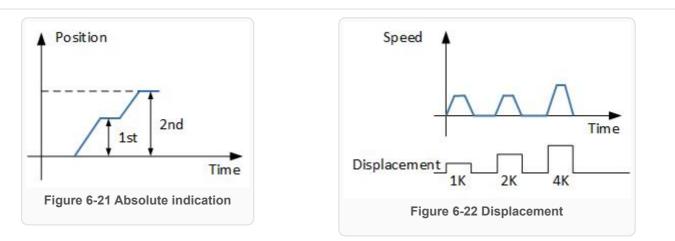


Run again from the start segment

In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in <u>Figure 6-17</u> and <u>Figure 6-18</u> respectively.



VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.

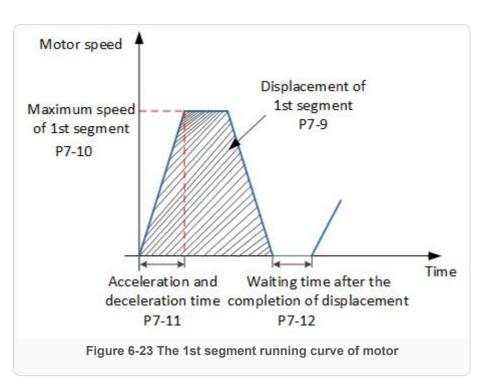

• Relative position instruction

The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.

• Absolute position instruction

The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.

• Multi-segment position running curve setting


The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. <u>Table 6-19</u> are the related function codes of the 1st segment running curve.

Fun ctio n cod e	Name	Setti ng meth od	Effecti ve time	Def ault val ue	Ran ge	Definition	Unit
P07- 09	1st segment displacement	Oper ation set- ting	Effecti ve imme- diately	100 00	-214 748 364 7 to 214 748 364 6	Position instruction, positive and negative values could be set	-
P07- 10	Maximum speed of the 1st displacement	Oper ation set- ting	Effecti ve imme- diately	100	1 to 500 0	Steady-state running speed of the 1st segment	rpm
P07- 11	Acceleration and decel- eration of 1st segment displacement	Oper ation set- ting	Effecti ve imme- diately	100	1 to 655 35	The time required for the accelera- tion and deceleration of the 1st segment	ms
P07- 12	Waiting time after com- pletion of the 1st seg- ment displacement	Oper ation set- ting	Effecti ve imme- diately	100	1 to 655 35	Delayed waiting time from the com- pletion of the 1st segment to the start of the next segment	Set by P07 -06

Table 6-19 The 1st position operation curve parameters table

After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.

06 Operation

• multi-segment position instruction enable

When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.

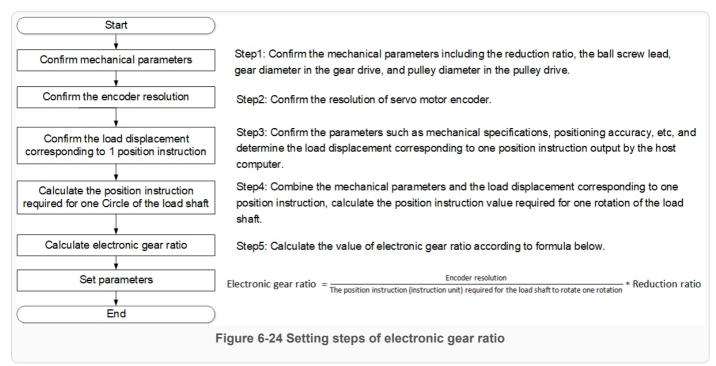
DI function code	Function name	Function
20	ENINPOS: Internal multi-segment posi- tion enable signal	DI port logic invalid: Does not affect the current oper- ation of the servo motor.
		DI port logic valid: Motor runs multi-segment position

It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!

Electronic gear ratio

Definition of electronic gear ratio

In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.


With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.

It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)

0.01 < Electronic gear ratio numerator Electronic gear ratio denominator	(6-1)
0.001 < Electronic gear ratio numerator Electronic gear ratio denominator	(6-2)
0.001 < Electronic gear ratio numerator Electronic gear ratio denominator < 32000	(6-3)
Electronic gear ratio denominator	(= -)

Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!

Setting steps of electronic gear ratio

lectronic gear ratio switch setting

When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.

Fu	Name	Set	Effe	D	Ra	Definition	Uni
nc		tin	ctiv	ef	nge		t
tio		g	е	au			
n		me	time	lt			
со		tho		va			
de		d		lu			
				е			

_

P0 0- 16	Number of in- struction pulses when the motor ro- tates one circle	Sh ut- do wn set- ting	Effec tive im- me- di- ately	10 00 0	0 to 131 072	Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.	Inst ruc tion pul se unit
P0 0- 17	Electronic gear 1 numerator	Op er- atio n set- ting	Effec tive im- me- di- ately	1	1 to 429 496 729 4	Set the numerator of the 1st group electronic gear ra- tio for position instruction frequency division or multi- plication. P00-16 is effective when the number of in- struction pulses of one motor rotation is 0.	-
P0 0- 18	Electronic gear 1 denominator	Op er- atio n set- ting	Effec tive im- me- di- ately	1	1 to 429 496 729 4	Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or mul- tiplication. P00-16 is effective when the number of in- struction pulses of one motor rotation is 0.	-
P0 0- 19	Electronic gear 2 numerator	Op er- atio n set- ting	Effec tive im- me- di- ately	1	1 to 429 496 729 4	Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or mul- tiplication. P00-16 is effective when the number of in- struction pulses of one motor rotation is 0.	-
P0 0- 20	Electronic gear 2 denominator	Op er- atio n set- ting	Effec tive im- me- di- ately	1	1 to 429 496 729 4	Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or mul- tiplication. P00-16 is effective when the number of in- struction pulses of one motor rotation is 0.	-

Table 6-20 Electronic gear ratio function code

To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.

DI function code	Function name	Function		
09	GEAR-SEL electronic gear switch 1	DI port logic invalid: electronic gear ratio 1		
		DI port logic valid: electronic gear ratio 2		

Table 6-21 Switching cond	ions of electronic gear ratio group
---------------------------	-------------------------------------

	P00-16 value	DI terminal level corre- sponding to DI port func- tion 9	Electronic gear ratio
0		DI port logic invalid	$\frac{P00-17}{P00-18}$
		DI port logic valid	$\frac{P00-19}{P00-20}$
1 to 131072			Encoder resolution P00 – 16

Table 6-22 Application of electronic gear ratio

When the function code P00-16 is not 0, the electronic gear ratio

A B B is invalid.

Position instruction filtering

Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.

In the following situations, position instruction filtering should be added.

- 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
- 2. The pulse instruction frequency is low;
- 3. When the electronic gear ratio is 10 times or more.

Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.

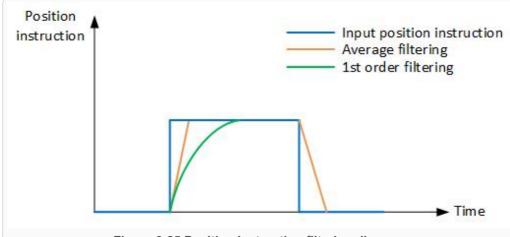


Figure 6-25 Position instruction filtering diagram

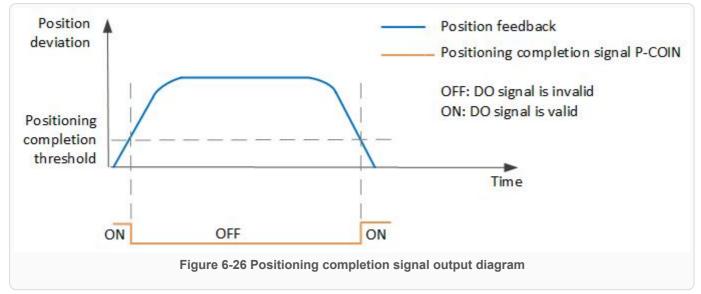
Funct ion code	Name	Settin g metho d	Effectiv e time	Defa ult valu e	Ra ng e	Definition	U n it
P04- 01	Pulse instruction filtering method	Shutdo wn setting	Effective immedi- ately	0	0 to 1	0: 1st-order low-pass filtering1: average filtering	-
P04- 02	Position instruction 1st-order low-pass filtering time constant	Shutdo wn setting	Effective immedi- ately	0	0 to 10 00	Position instruction first-or- der low-pass filtering time constant	m s
P04- 03	Position instruction average filtering time constant	Shutdo wn setting	Effective immedi- ately	0	0 to 12 8	Position instruction average filtering time constant	m s

Table 6-23 Position instruction filter function code

Clearance of position deviation

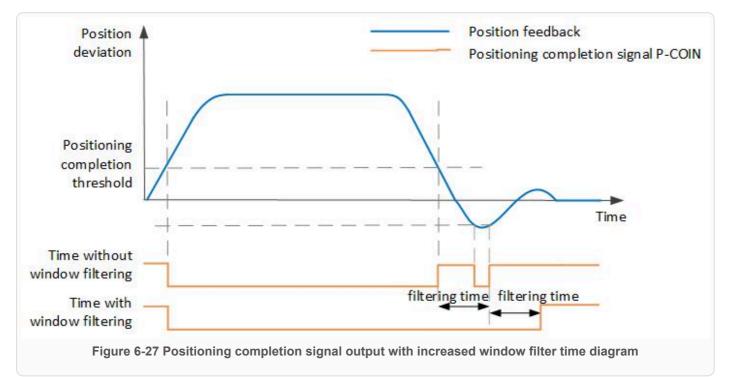
Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;

Position deviation = (position instruction-position feedback) (encoder unit)


Position-related DO output function

The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.

Positioning completion/positioning approach output

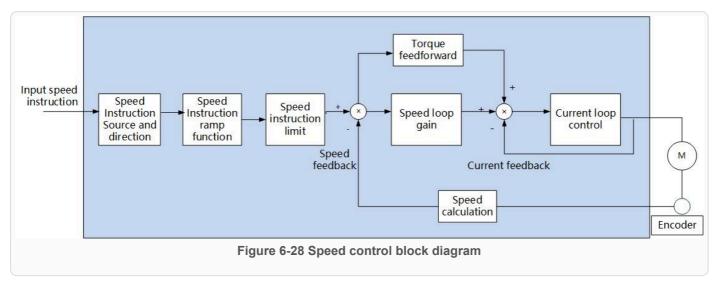

06 Operation

the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.

When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.

To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as <u>Table 6-24</u> .

Functio n code	Name	Setting method	Effe ctiv e time	De fa ult va lu e	Ran ge	Definition	Unit
P05-12	Positioning com- pletion threshold	Operatio n setting	Effe ctive im- me- di- ately	80 0	1 to 6553 5	Positioning completion threshold	Equivalent pulse unit
P05-13	Positioning ap- proach threshold	Operatio n setting	Effe ctive im- me- di- ately	50 00	1 to 6553 5	Positioning approach threshold	Equivalent pulse unit
P05-14	Position detection window time	Operatio n setting	Effe ctive im- me- di- ately	10	0 to 2000 0	Set positioning completion detection window time	ms
P05-15	Positioning signal hold time	Operatio n setting	Effe ctive im- me- di- ately	10 0	0 to 2000 0	Set positioning completion output hold time	ms


Table 6-24 Function code parameters of positioning completion

DO function code	Function name	Function
134	P-COIN positioning complete	Output this signal indicates the servo drive position is complete.
135	P-NEAR positioning close	Output this signal indicates that the servo drive position is close.

Table 6-25 Description of DO rotation detection function code

Speed control mode

Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. Figure 6-28 is the speed control block diagram.

Speed instruction input setting

In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.

Fun ctio n cod e	Name	Setti ng met hod	Effe ctiv e time	D ef ul t v al u e	R a g e	Definition Unit	
P01 -01	Speed instruc- tion source	Shut dow n set- ting	Effe ctive im- me- di- ately	0	0 t 0 1	 0: inter- nal speed instruc- tion 1: Al_1 analog input (not sup- ported by 	

VD2F)

Table 6-26 Speed instruction source parameter

P01-25

Internal

Speed instruction source is internal speed instruction (P01-01=0)

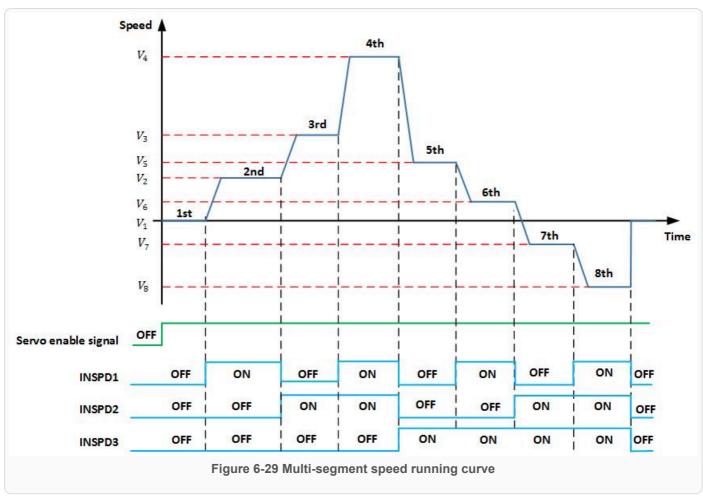
Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo

Function code	Name	Settin g metho d	Effectiv e time	Default value	Range	Definition	U ni t
P01-02	Internal speed Instructio n 0	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 0 When DI input port: • 15-INSPD3: 0 • 14-INSPD2: 0 • 13-INSPD1: 0, select this speed instruction to be effective.	rp m
P01-23	Internal speed Instructio n 1	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 1 When DI input port: • 15-INSPD3: 0 • 14-INSPD2: 0 • 13-INSPD1: 1, Select this speed instruction to be effective.	rp m
P01-24	Internal speed Instructio n 2	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 2 When DI input port: • 15-INSPD3: 0 • 14-INSPD2: 1 • 13-INSPD1: 0, Select this speed instruction to be effective.	rp m

	speed Instruc- tion 3	Oper- ation setting	Effec- tive immedi- ately	0	-5000 to 5000	Internal speed instruction 3 When DI input port: • 15-INSPD3: 0 • 14-INSPD2: 1 • 13-INSPD1: 1, Select this speed instruction to be effective.	rp m
P01-26	Internal speed Instructio n 4	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 4 When DI input port: • 15-INSPD3: 1 • 14-INSPD2: 0 • 13-INSPD1: 0, Select this speed instruction to be effective.	rp m
P01-27	Internal speed Instructio n 5	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 5 When DI input port: • 15-INSPD3: 1 • 14-INSPD2: 0 • 13-INSPD1: 1, Select this speed instruction to be effective.	rp m
P01-28	Internal speed Instructio n 6	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 6 When DI input port: • 15-INSPD3: 1 • 14-INSPD2: 1 • 13-INSPD1: 0, Select this speed instruction to be effective.	rp m
P01-29	Internal speed Instructio n 7	Opera tion setting	Effectiv e immedi- ately	0	-5000 to 5000	Internal speed instruction 7 When DI input port: • 15-INSPD3: 1 • 14-INSPD2: 1 • 13-INSPD1: 1, Select this speed instruction to be effective.	rp m

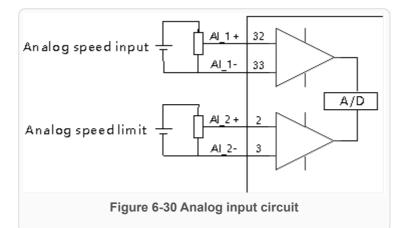
DI function code	function name	Function
13	INSPD1 internal speed instruction selec- tion 1	Form internal multi-speed running segment number
14	INSPD2 internal speed instruction selec- tion 2	Form internal multi-speed running segment number
15	INSPD3 internal speed instruction selec- tion 3	Form internal multi-speed running segment number

Table 6-27 Internal speed instruction parameters

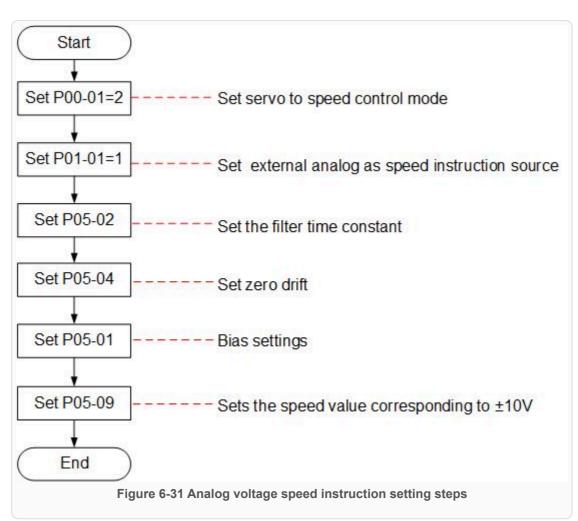

Table 6-28 DI multi-speed function code description

The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.

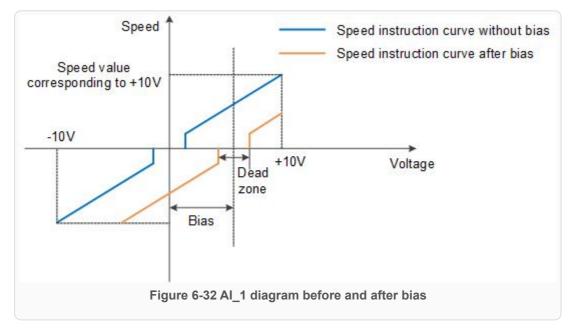
INSPD3	INSPD2	INSPD1	Running segment number	Internal speed instruction number
0	0	0	1	0
0	0	1	2	1
0	1	0	3	2
1	1	1	8	7


Table 6-29 Correspondence between INSPD bits and segment numbers

06 Operation


Speed instruction source is internal speed instruction (P01-01=1)

The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.

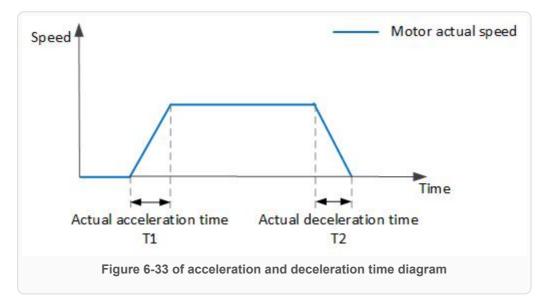

Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.

06 Operation

Explanation of related terms:

- Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
- Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
- Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.

Functi on code	Name	Setting method	Effective time	Defau It value	Rang e	Definition	Un it
P05- 01☆	AI_1 input bias	Operati on setting	Effective immedi- ately	0	-5000 to 5000	Set Al_1 channel analog bias value	m V
P05- 02☆	AI_1 input filter time constant	Operati on setting	Effective immedi- ately	200	0 to 60000	Al_1 channel input first-order low-pass filtering time constant	0. 01 ms
P05- 03☆	AI_1 dead zone	Operati on setting	Effective immedi- ately	20	0 to 1000	Set AI_1 channel quantity dead zone value	m V
P05- 04☆	Al_1 zero drift	Operati on setting	Effective immedi- ately	0	-500 to 500	Automatic calibration of zero drift inside the drive	m V


Table 6-30 Al_1 parameters

Note: "☆" means VD2F servo drive does not support the function code .

Acceleration and deceleration time setting

The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.

In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.

Actual acceleration time T1 = $\frac{\text{speed instruction}}{1000} \times \text{acceleration time}$ Actual deceleration time T2 = $\frac{\text{speed instruction}}{1000} \times \text{deceleration time}$

Functio n code	Name	Setting method	Effective time	Defaul t value	Ran ge	Definition	U n it
P01-03	Accelerat ion time	Operatio n setting	Effective immedi- ately	50	0 to 6553 5	The time for the speed instruction to accelerate from 0 to 1000rpm	m s
P01-04	Decelera tion time	Operatio n setting	Effective immedi- ately	50	0 to 6553 5	The time for the speed instruction to decelerate from 1000rpm to 0	m s

Table 6-31 Acceleration and deceleration time parameters

Speed instruction limit

In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:

- 1. P01-10: Set the maximum speed limit value
- 2. P01-12: Set forward speed limit value
- 3. P01-13: Set reverse speed limit value
- 4. The maximum speed of the motor: determined by motor model

The actual motor speed limit interval satisfies the following relationship:

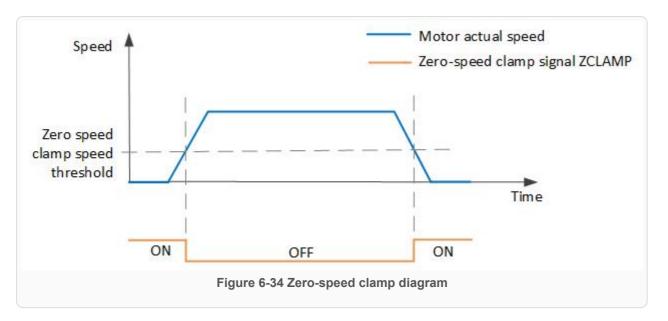
The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)

The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)

Funct ion code	Name	Settin g metho d	Effective time	Defa ult value	Ra ng e	Definition	U n it
P01- 10	Maximum speed threshold	Operati on setting	Effective immedi- ately	3600	0 to 50 00	Set the maximum speed limit value, if ex- ceeds this value, an overspeed fault will be reported	r p m
P01- 12	Forward speed threshold	Operati on setting	Effective immedi- ately	3000	0 to 50-		

					00	Set forward speed limit value	r p m
P01- 13	Reverse speed threshold	Operati on setting	Effective immedi- ately	3000	0 to 50 00	Set reverse speed limit value	r p m

Table 6-32 Rotation speed related function codes

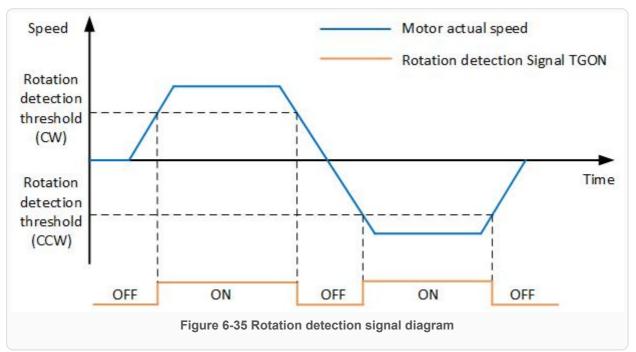

Zero-speed clamp function

The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.

If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.

Func tion code	Name	Settin g meth od	Effectiv e time	Defa ult valu e	Ra ng e	Definition	U n it
P01- 21	Zero-speed clamp function selection	Opera tion set- ting	Effectiv e immedi- ately	0	0 to 3	 Set the zero-speed clamp function. In speed mode: 0: Force the speed to 0; 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked 3: Invalid, ignore zero-speed clamp input 	-
P01- 22	Zero-speed clamp speed threshold	Opera tion set- ting	Effectiv e immedi- ately	20	0 to 10 00	Set the speed threshold of zero-speed clamp function	r p m

Table 6-33 Zero-speed clamp related parameters



Speed-related DO output function

The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.

Rotation detection signal

After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.

To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in <u>Table 6-34</u> and <u>Table 6-35</u>.

Functio n code	Name	Setting method	Effective time	Default value	Ran ge	Definition	U ni t
P05-16	Rotation detection speed threshold	Operation setting	Effective immediately	20	0 to 1000	Set the motor rotation signal judgment threshold	rp m

Table 6-34 Rotation detection speed threshold parameters

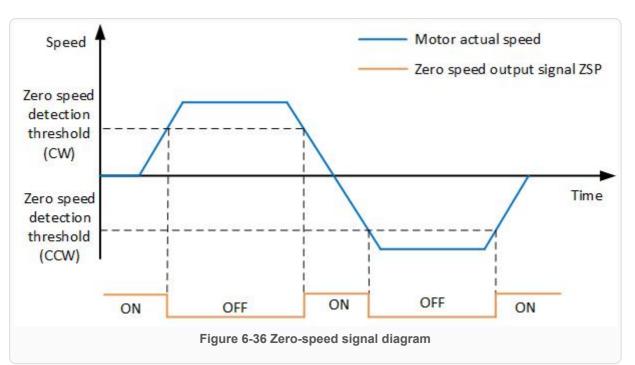

DO function code	Function name	Function
132	T-COIN ro- tation detection	Valid: when the absolute value of mo- tor speed after filtering is greater than or equal to the set value of function code P05-16
		Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16

Table 6-35 DO rotation detection function code

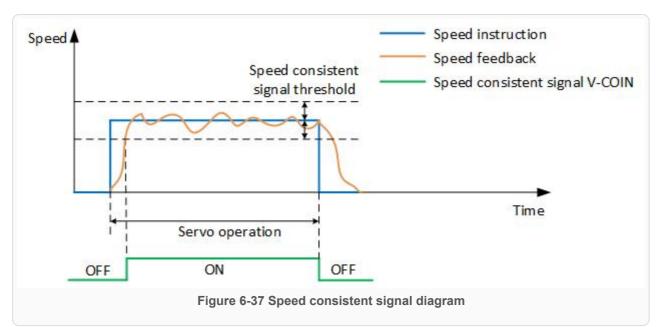
Zero-speed signal

If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.

06 Operation

To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in <u>Table 6-36</u> and <u>Table 6-37</u>.

Functio n code	Name	Setting method	Effective time	Defaul t value	Ran ge	Definition	U n it
P05-19	Zero speed output signal threshold	Operatio n setting	Effective immedi- ately	10	0 to 600 0	Set zero-speed output sig- nal judgment threshold	r p m


Table 6-36 Zero-speed output signal threshold parameter

DO function code	Function name	Function
133	ZSP zero speed signal	Output this signal indicates that the servo motor is stopping rotation

Table 6-37 DO zero-speed signal function code

Speed consistent signal

When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.

To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in <u>Table 6-38</u> and <u>Table 6-39</u>.

Functio n code	Name	Setting method	Effective time	Default value	Ran ge	Definition	U n it
P05-17	Speed consistent signal threshold	Operation setting	Effective immediately	10	0 to 100	Set speed consistent signal threshold	r p m

Table 6-38 Speed consistent signal threshold parameters

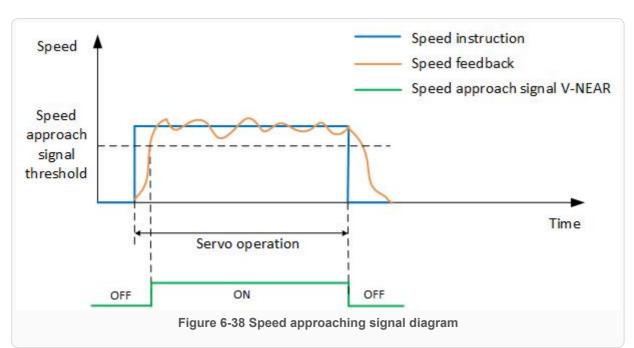

DO Function code	Function name	Function
136	U-COIN consistent speed	The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value

Table 6-39 DO speed consistent function code

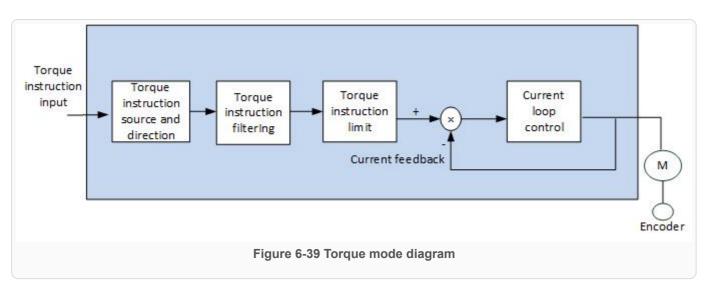
Speed approach signal

After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.

06 Operation

To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in <u>Table 6-40</u> and <u>Table 6-41</u>.

Func tion code	Name	Setting method	Effective time	Default value	Range	Definition	U nit
P05- 18	Speed ap- proach signal thresh- old	Operation setting	Effective immediately	100	10 to 6000	Set speed approach signal threshold	rp m


Table 6-40 Speed approaching signal threshold parameters

DO func code	 Function name	Function
137	V-NEAR speed approach	The output signal indicates that the actual speed of the servo motor has reached the expected value

Table 6-41 DO speed approach function code

Torque control mode

The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.

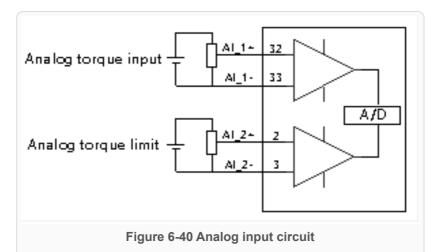
Torque instruction input setting

In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.

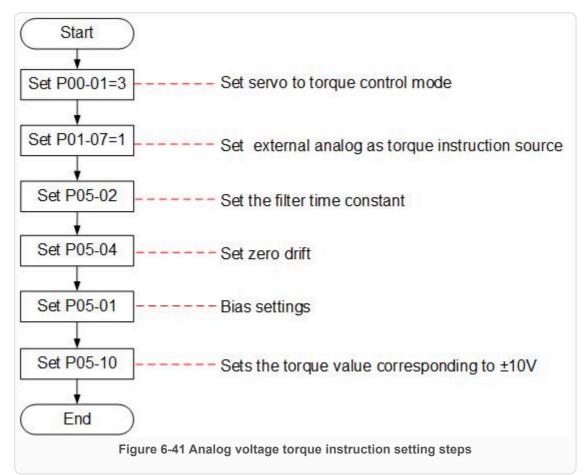
	unctio code	Name	Setting method	Effective time	Default value	Ra ng e	Definition	U ni t
P	01-07	Torque instruc- tion source	Shutdown setting	Effective immediately	0	0 to 1	0: internal torque instruction 1: AI_1 analog input(not supported by VD2F)	-

Table 6-42 Torque instruction source parameter

Torque instruction source is internal torque instruction (P01-07=0)

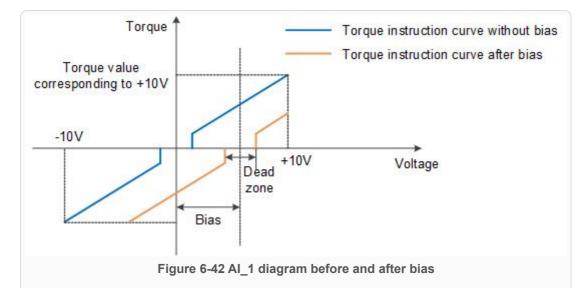

Torque instruction source is from inside, the value is set by function code P01-08.

Functior code	Name	Setting method	Effective time	Default value	Range	Definition	U ni t
P01-08	Torque instruction key- board set value	Operation setting	Effective immediately	0	-3000 to 3000	-300.0% to 300.0%	0. 1 %


Table 6-43 Torque instruction keyboard set value

Torque instruction source is Al_1 analog input (P01-07=1)

The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.



Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.

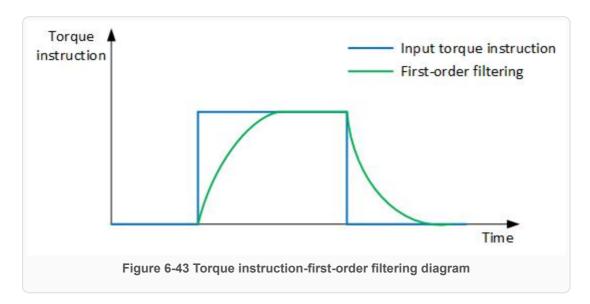
Explanation of related terms:

- Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
- Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
- Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.

Functi on code	Name	Setting method	Effective time	Defau It value	Rang e	Definition	Un it
P05- 01☆	AI_1 input bias	Operati on setting	Effective immedi- ately	0	-5000 to 5000	Set AI_1 channel analog bias value	m V
P05- 02☆	AI_1 input filter time constant	Operati on setting	Effective immedi- ately	200	0 to 60000	AI_1 channel input first-order low-pass filtering time constant	0. 01 ms
P05- 03☆	AI_1 dead zone	Operati on setting	Effective immedi- ately	20	0 to 1000	Set AI_1 channel dead zone value	m V
P05- 04☆	Al_1 zero drift	Operati on setting	Effective immedi- ately	0	-500 to 500	Automatic calibration of zero drift inside the drive	m V

Table 6-44 AI_1 parameters

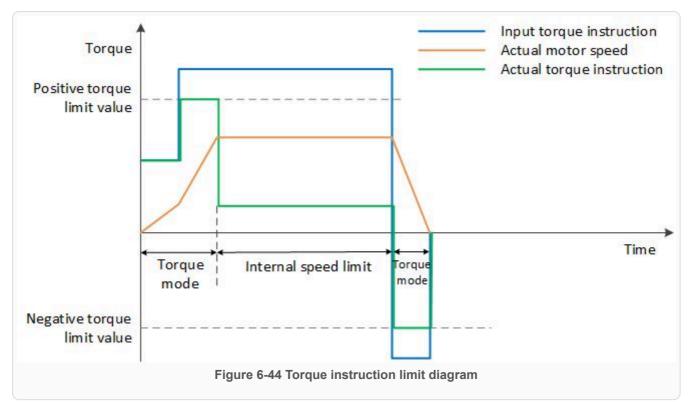
Note: "☆" means VD2F servo drive does not support the function code .


Torque instruction filtering

In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in <u>Figure 6-43</u>.

Function code	Name	Setting method	Effective time	Default value	R a n g e	Definition	Unit
P04-04	Torque filtering time constant	Operation setting	Effective immediately	50	1 0 2 5 0	This parameter is automatically set when "self-adjust- ment mode selec- tion" is selected as 0	0.01 ms

Table 6-45 Torque filtering time constant parameter details


Note: If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.

Torque instruction limit

When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.

At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.

Set torque limit source

You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.

Functio n code	Name	Setting method	Effective time	Default value	Ra ng e	Definition	U ni t
P01-14	Torque limit source	Shutdown setting	Effective immediately	0	0 to 1	 0: internal value 1: Al_1 analog input (not supported by VD2F) 	-

• Torque limit source is internal torque instruction (P01-14=0)

Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.

Function code	Name	Setting method	Effective time	Default value	Ra ng e	Definition	Un it
P01-15	Forward torque limit	Operation setting	Effective immediately	3000	0 to 30 00	When P01-14 is set to 0, the value of this function code is forward torque limit value	0.1 %

P01-16	Reverse torque limit	Operation setting	Effective immediately	3000	0 to 30 00	When P01-14 is set to 0, the value of this function code is reverse torque limit value	0.1 %

Table 6-46 Torque limit parameter details

• Torque limit source is external (P01-14=1)

Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.

Set torque limit DO signal output

When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit), and confirm that the terminal logic is valid.

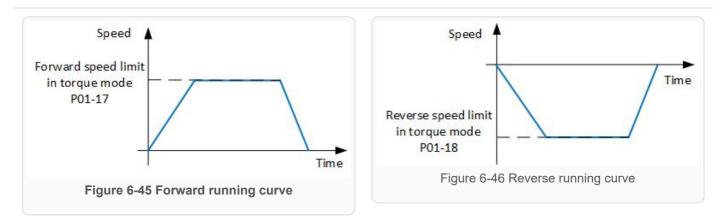

DO function code	Function name	Function
139	T-LIMIT in torque limit	Output of this signal indicates that the servo motor torque is limited

Table 6-47 DO torque limit function codes

Speed limit in torque mode

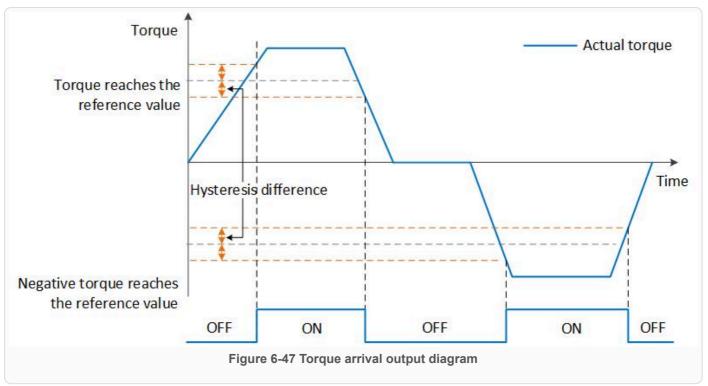
In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.

In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as <u>Figure 6-45</u> and <u>Figure 6-46</u>.

Function code	Name	Setting method	Effective time	Default value	Rang e	Definition	Un it
P01-17	Forward torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	Forward torque limit in torque mode	0.1 %
P01-18	Reverse torque limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	Reverse torque limit in torque mode	0.1 %

Table 6-48 Speed limit parameters in torque mode

Note: Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to <u>6.3.3 Speed instruction limit</u>.


Torque-related DO output functions

The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.

Torque arrival

The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.

06 Operation

To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in <u>Table 6-49</u> and <u>Table 6-50</u>.

Function code	Na me	Se tti ng me th od	Effe ctiv e time	D ef ul t v al u e	Ra ng e	Definition Unit
P05-20	Tor que ar- ri- val thre sh- old	Op er- ati on set tin g	Effe ctive im- me- di- atel y	1 0	0 to 30 0	The torque arrival threshold must be used with "Torque ar- rival hysteresis value": When the actual torque reaches Torque arrival thresh- old + Torque arrival hysteresis Value, the torque arrival DO is valid; When the actual torque decreases be- low torque arrival

						threshold-torque ar- rival hysteresis value, the torque arrival DO is invalid	%
P05-21	Tor que ar- ri- val hys tere sis	Op er- ati on set tin g	Effe ctive im- me- di- atel y	1 0	0 to 20	Torque arrival the hysteresis value must be used with Torque arrival threshold	%

 Table 6-49 Torque arrival parameters

DO function code	Function name	Function
138	T-COIN torque arrival	Used to determine whether the actual torque instruction has reached the set range

Table 6-50 DO Torque Arrival Function Code

Mixed control mode

Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:

- Position mode \Leftrightarrow Speed mode
- Position mode ⇔Torque mode
- Speed mode \Leftrightarrow Torque mode

Set the function code P00-01 through the software of Wecon "SCTool" or servo drive panel, and the servo drive will run in mixed mode.

Function code	Name	Setting method	Effective time	Default value	R an ge	Definition	Uni t
P00-01	Control mode	Shutdown setting	Shutdown setting	1	1 to 6	 1: Positio n control 2: Speed control 	

06 Operation

•	3:
	Torque
	control
•	4:
	Positio
	n/spee
	d
	mixed
	control
•	5:
	Positio
	n/torqu
	е
	mixed
	control
•	6:
	Speed
	/torque
	mixed
	control

Table 6-51 Mixed control mode parameters

Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to <u>"Parameters"</u> I. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.

DI function code	Name	Functio n name		Function	I			
17	MixModeSel	Mixed mode selec-	the serv	Used in mixed control mode, when the servo status is "run", set the cur- rent control mode of the servo drive				
		tion	P00- 01	MixModeSe I terminal Iogic	Control mode			
			4	Valid	Speed mode			
				invalid	Position mode			
			5	Valid	Torque mode			
				invalid	Position mode			

6	Valid	Torque mode
	invalid	Speed mode

Table 6-52 Description of DI function codes in control mode

Note: In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.

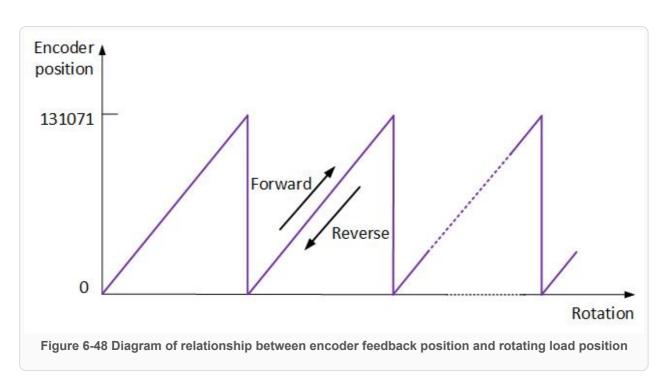
Absolute system

Overview

Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.

The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.

Single-turn absolute value system


The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.

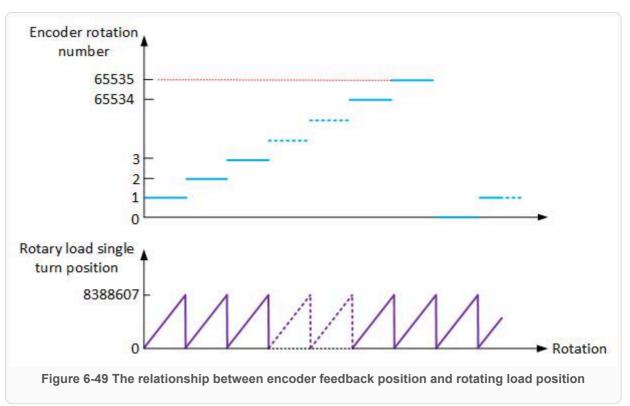
Encoder type	Encoder resolution (bits)	Data range
A1 (single-turn magnetic encoder)	17	0 to 131071

Table 6-53 Single-turn absolute encoder information

The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).

06 Operation

Multi-turn absolute value system


The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.

Encoder type	Encoder resolution (bits)	Data range
C1 (multi-turn magnetic encoder)	17	0 to 131071
D2 (multi-turn Optical encoder)	23	0 to 8388607

Table 6-54 Multi-turn absolute encoder information

The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).

06 Operation

Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)

Under the following two working conditions: 1. The current physical position of the motor cannot reach the absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.

P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.

Fun ctio n cod e	Name	S et n g m et h o d	Effect ive time	D f a lt	R n g e	Definition	U n it
P10 -06	Multi-turn absolute encoder reset	S h ut d w n se					

Effec- tive imme- diately	0	0 t 0 1	 0: No operation 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. Note: After resetting the multi-turn data of the encoder, the
	tive imme-	tive imme-	tive t imme- o

encoder absolute position will change suddenly, and the mechanical origin return operation is required.

Fu nc- tio n co de	Name	S et n g m et h o d	Effe ctive time	D f a lt	Range	Definition	U n it
P1 0- 08	Multi-turn ab- solute en- coder origin offset compensation	O p er at io n s et ti n g	Effec tive im- me- di- ately	0	-21474 83647 to 21474 83646	P10-08 multi-turn absolute encoder origin offset com- pensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.	-

Related functions and parameters

Encoder feedback data

The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.

Monitoring number	Categor y	Name	Unit	Data typ e
U0-54	Universa I	Absolute encoder position within 1 turn	Encoder unit	32-bit

U0-55	i Univer- sal	Rotations number of absolute encoder	circle	16-bit
U0-56	Universa	Multi-turn absolute value encoder current position	Instruction unit	32-bit

Table 6-55 Encoder feedback data

Shield multi-turn absolute encoder battery fault

The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.

Fu nc- tio n co de	Name	Set tin g met ho d	Eff ec- tiv e tim e	De fa ult va lu e	R a n g e	Definition	U n it
P0 0- 30	Shield multi- turn abso- lute encoder battery fault	Op era- tion set- ting	Po we r on ag ain	0	0 t 0 1	 0: Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute 	-

This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.

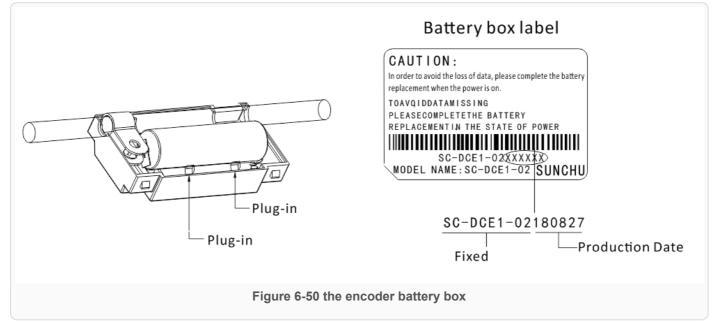
A93 warning solution

Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.

Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.

Functi on code	Name	tin a	Effe ctive time		an	Definition	U n it
----------------------	------	----------	-----------------------	--	----	------------	--------------

31 check abnormal


frequency	Op era- tion set- ting	imm edi- ately Effec tive	20	0 to 10 0	The setting of the alarm threshold for the ab- normal frequency of the encoder read-write 0: no alarm Others: When this setting value is exceeded, report A93.	-

Note: Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.

Absolute value system encoder battery box use precautions.

Cautions

Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.

When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.

Replace the battery

Please replace the battery while keeping the servo drive and motor well connected and the power on.

The specific replacement method is as follows:

- Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
- Step2 Remove the old battery.
- Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
- Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.

When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.

Fu nc- tio n co de	Name	Sett ing met hod	Effec tive time	De fau It val ue	R a n g e	Definition	U n it
P1 0- 06	Multi-turn absolute encoder reset	Shut dow n set-	Effect ive im- medi-	0	0 t 0 1	 0: No operation 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms. 	-
		ting	ately			Note: After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.	

Table 6-56 Absolute encoder reset enable parameter

Battery selection

Battery selection specification	Item	Value
Nominal Voltage: 3.6V	Standard battery voltage (V)	3.6
Nominal capacity: 2700mAh	Standard cell voltage (V)	3.1
	Battery ambient temperature range	0 to 40
	Battery storage ambient temperature range	-20 to 60

Table 6-57 Absolute value encoder battery information

Note:

If the battery is replaced when the servo drive is powered off, the encoder data will be lost.

When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.

Correct placement of batteries +, - direction

- 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
- 2. This battery cannot be charged.
- 3. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
- 4. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
- 5. After the replacement of the battery, please dispose of it according to local laws and regulations.


Other functions

VDI

VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.

Note: If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error "A-89" (DI port configuration is duplicate).

Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.

	VDI_1 input value	Opera- tion setting	Effective immedi- ately	0	0 to 1	 When P06-04 is set to 1, DI_1 channel logic is control by this function code. VDI_1 input level: 0: low level 1: high level 	-
P13-2	Virtual VDI_2 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-07 is set to 1, DI_2 channel logic is control by this function code. VDI_2 input level: 0: low level 1: high level 	-
P13-3	Virtual VDI_3 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-10 is set to 1, DI_3 channel logic is control by this function code. VDI_3 input level: 0: low level 1: high level 	-
P13-4	Virtual VDI_4 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-13 is set to 1, DI_4 channel logic is control by this function code. VDI_4 input level: 0: low level 1: high level 	-
P13- 05☆	Virtual VDI_5 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-16 is set to 1, DI_5 channel logic is control by this function code. VDI_5 input level: 0: low level 1: high level 	-
P13- 06☆	Virtual VDI_6 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-19 is set to 1, DI_6 channel logic is control by this function code. VDI_6 input level: 0: low level 1: high level 	-
P13- 07★	Virtual VDI_7 input value	Operati on setting	Effective immedi- ately	0	0 to 1	When P06-22 is set to 1, DI_7 channel logic is control by this function code.VDI_7 input level:0: low level	

						• 1: high level	-
P13- 08☆	Virtual VDI_8 input value	Operati on setting	Effective immedi- ately	0	0 to 1	 When P06-25 is set to 1, DI_8 channel logic is control by this function code. VDI_8 input level: 0: low level 1: high level 	-

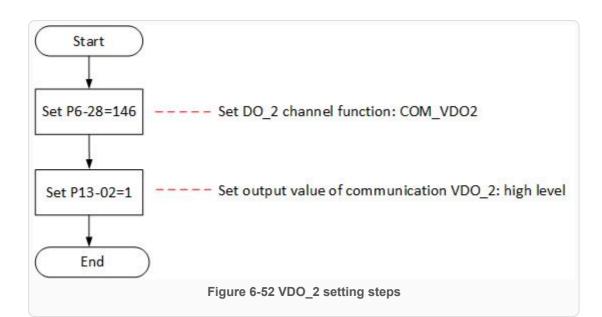
Table 6-57 Virtual VDI parameters

Note: "☆" means VD2F servo drive does not support the function code .

Port filtering time

VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8), and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4). All the DI terminals are normal terminals.

Setting value	DI channel logic selection		Illustration
0	Active high level	High level – Low level	More than 3ms
		Low level	Valid
1	Active low level		Valid
		High level	More than 3ms
		Low level –	_ ←


Table 6-58 DI terminal channel logic selection

VDO

In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.

Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.

06 Operation

Function code	Name	Setting method	Effective time	Default value	Ra nge	Definition	U ni t
P13-11	Communication VDO_1 output value	Operation setting	Effective immediately	0	0 to 1	VDO_1 output level: • 0: low level • 1: high level	-
P13-12	Communication VDO_2 output value	Operation setting	Effective immediately	0	0 to 1	VDO_2 output level: • 0: low level • 1: high level	-
P13-13	Communication VDO_3 output value	Operation setting	Effective immediately	0	0 to 1	VDO_3 output level: • 0: low level • 1: high level	-
P13-14	Communication VDO_4 output value	Operation setting	Effective immediately	0	0 to 1	VDO_4 output level: • 0: low level • 1: high	-

DO function number	Function name	Function
145	COM_VDO1 communication VDO1 output	Use communication VDO
146	COM_VDO1 communication VDO2 output	Use communication VDO
147	COM_VDO1 communication VDO3 output	Use communication VDO
148	COM_VDO1 communication VDO4output	Use communication VDO

Table 6-59 Communication control DO function parameters

Table 6-60 VDO function number

Note: You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation

If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error "A-90" (DO port configuration is duplicate).

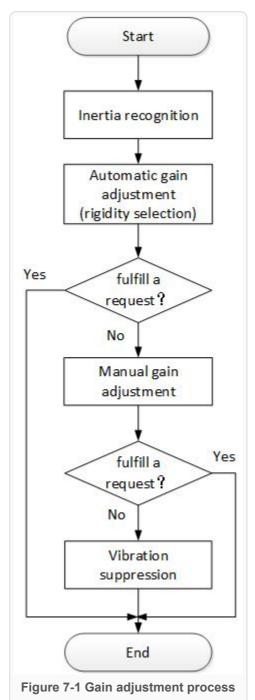
Motor overload protection

VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.

Fu nc- tio n co de	Name	Set ting met hod	Effe ctive time	De fa ult va Iu e	R a n g e	Definition	U ni t
P1 0- 04	motor overload protection time coefficient	Op era- tion set- ting	Effec tive im- me- di- ately	10 0	0 t 0 0	According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value. 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled	%

In the following cases, it could be modified according to the actual heat generation of the motor

- 1. The motor works in a place with high ambient temperature
- 2. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.


In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).

Note: It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.

07 Adjustments

Overview

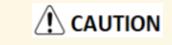
The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.

The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.

07 Adjustments

Note: Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.

Gain adjustment process			Function					
1	Online inertia recognition		Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.					
2	Automa adjust	-						
	Manua I gain adjust- ment	Basic gain	On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.	<u>7.3.</u> 2				
3		Feedf or- ward gain	The feedforward function is enabled to improve the followability.	<u>7.3.</u> <u>3</u>				
4	Vibrati on sup- pres- sion	Mech anical reso- nance	The notch filter function is enabled to suppress mechanical resonance.	<u>7.4.</u> 1				


Table 7-1 Description of gain adjustment process

Inertia recognition

Load inertia ratio P03-01 refers to:

Load inertia ratio	Total moment of inertia of mechanical load				
	Motor's moment of inertia		_		

The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.

Before performing online load inertia recognition, the following conditions should be met:

- The maximum speed of the motor should be greater than 300rpm;
- The actual load inertia ratio is between 0.00 and 100.00;
- The load torque is relatively stable, and the load cannot change drastically during the measurement process;
- The backlash of the load transmission mechanism is within a certain range;

The motor's runable stroke should meet two requirements:

- There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
- Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
- Meet the requirement of inertia recognition turns P03-05.
- Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
- During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.

Fu nc- tio n cod e	Nam e	Settin g metho d	Effecti ve time	Def ault valu e	Ra nge	Definition	Unit
P03 -01	Load iner- tia ratio	Operati on setting	Effecti ve imme- diately	300	100 to 100 00	Set load iner- tia ratio, 0.00 to 100.00 times	0.01
P03 -05	Inerti a reco gni- tion turns	Shutdo wn setting	Effecti ve imme- diately	2	1 to 20	Offline load inertia recog- nition process, mo- tor rotation number setting	circle

The related function codes are shown in the table below.

P03 -06	Iner- tia reco gni- tion max- imu m spee d	Shut- down setting	Effec- tive imme- diately	100 0	300 to 200 0	Set the al- lowable max- imum motor speed in- struction in offline inertia recognition mode. The faster the speed during inertia recognition, the more ac- curate the recognition result will be. Usually, you can keep the default value.	rpm
P03 -07	Para me- ter reco gni- tion rota- tion di- rec- tion	Shutdo wn setting	Effecti ve imme- diately	0	0 to 2	0: Forward and reverse reciprocating rotation 1: Forward one-way rotation 2: Reverse one-way rotation	-

Table 7-2 Related parameters of gain adjustment

Gain adjustment

In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.

Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.

The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.

Automatic gain adjustment

Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.

The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.

Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.

The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.

Rigidity grade	Load mechanism type
Grade 4 to 8	Some large machinery
Grade 8 to 15	Low rigidity applications such as belts
Grade 15 to 20	High rigidity applications such as ball screw and direct connection

Table 7-3 Experience reference of rigidity grade

When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.

When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:

- Step1 Confirm that the servo is in the ready state, the panel displays "rdy", and the communication line is connected;
- Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
- Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
- Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
- Step5 After the inertia recognition test is completed, click "Save Inertia Value";
- Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
- Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.

There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!

***** For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".

F u n ct io n c o d e	Nam e	Se tti ng me th od	Eff ec- tiv e tim e	D ef ul t v al u e	R a g e	Definition	Unit
P 0 3- 0 3	Self- ad- just- ing mod e se- lec- tion	Op er- ati on set tin g	Eff ec- tiv e im- me di- ate ly	0	0 to 2	 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 2: Online auto- 	

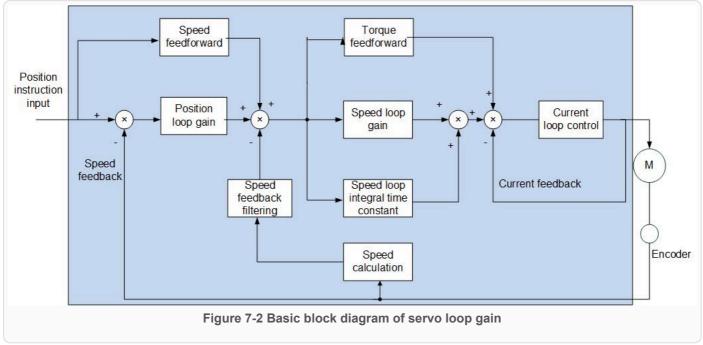

matic parameter self-adjusting mode (Not im- plemented yet)	_
--	---

Table 7-4 Details of self-adjusting mode selection parameters

Manual gain adjustment

When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.

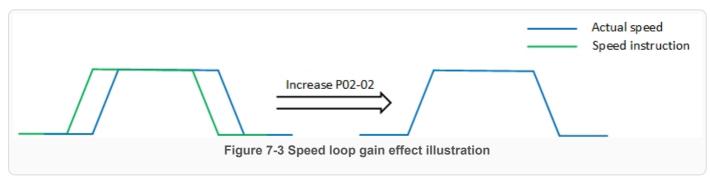
The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.

The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!

The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.

This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.

Function code	Name
P02-01	The 1st position loop gain
P02-02	The 1st speed loop gain
P02-03	The 1st speed loop integral time constant
P02-04	The 2nd position loop gain

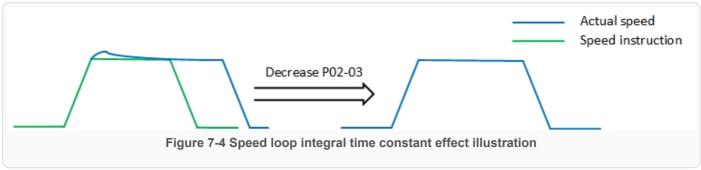

P02-05	The 2nd speed loop gain
P02-06	The 2nd speed loop integral time constant
P04-04	Torque filter time constant

Speed loop gain

In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.

Fun ctio n cod e	Name	Sett ing met hod	Effe ctiv e time	De fa ult val ue	Ra ng e	Definition	Unit
P02 -02	1st speed loop gain	Ope ra- tion set- ting	Effe ctive im- me- di- ately	65	0 to 35 00 0	Set speed loop proportional gain to deter- mine the re- sponsiveness of speed loop.	0.1Hz
P02 -05	2nd speed loop gain	Ope ra- tion set- ting	Effe ctive im- me- di- ately	65	0 to 35 00 0	Set speed loop proportional gain to deter- mine the re- sponsiveness of speed loop.	0.1Hz

Table 7-5 Speed loop gain parameters

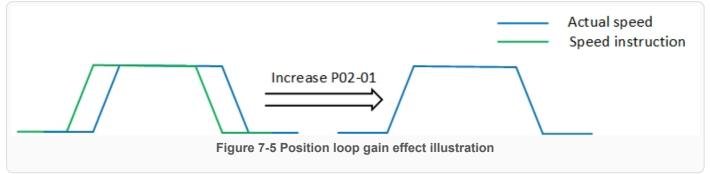


Speed loop integral time constant

The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.

Functi on code	Name	Setting method	Effectiv e time	Default value	Range	Definition	Unit
P02-03	1st speed loop integral time constant	Operatio n setting	Effective immedi- ately	1000	100 to 65535	Set the speed loop inte- gral constant. The smaller the set value, the stronger the integral effect.	0.1m s
P02-06	2nd speed loop integral time constant	Operatio n setting	Effective immedi- ately	1000	0 to 65535	Set the speed loop inte- gral constant. The smaller the set value, the stronger the integral effect.	0.1m s

Table 7-6 Speed loop integral time constant parameters


Position loop gain

Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.

Fu nc tio n co de	Name	Sett ing met hod	Eff ec- tive tim e	D e f u lt v al u e	R a g e	Definition	Unit
P0 2- 01	1st po- sition loop gain	Ope ra- tion set- ting	Eff ec- tive im- me- di- atel v	4 0 0	0 to 62 00	Set position loop proportional gain to determine the responsiveness of position control system.	0.1Hz

P0 2- 04	posi- r tion ti loop s	Ope ra- tion set- ting atel y	3 5	0 to 62 00	Set position loop proportional gain to determine the responsiveness of position control system.	0.1Hz	
----------------	------------------------------	---	--------	---------------------	--	-------	--

Table 7-7 Position loop gain parameters

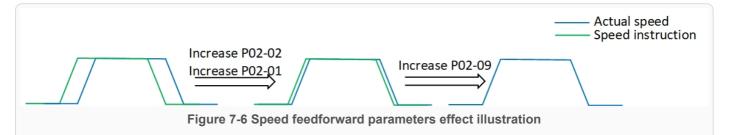
Torque instruction filter time

Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.

Fu nc- tio n cod e	Name	Sett ing met hod	Effe ctiv e time	D e f u lt v al u e	Definition	Unit
P04 -04	Torque filter time constant	Ope ra- tion set- ting	Effe ctive im- me- di- atel y	5 0	This parameter is automatically set when "self-adjust- ment mode selec- tion" is selected as 1 or 2	0.01ms

Table 7-8 Details of torque filter time constant parameters

Feedforward gain

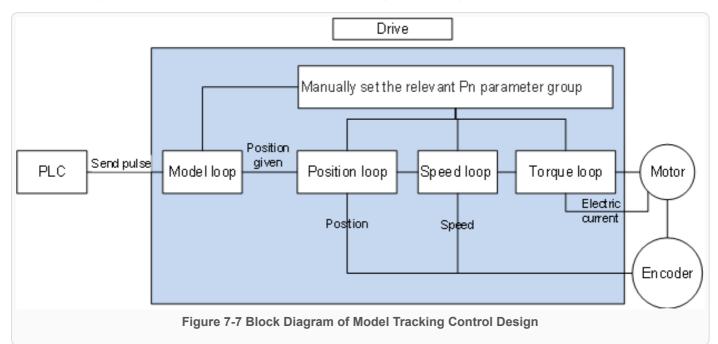

Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.

Speed feedforward parameters are shown in <u>Table 7-9</u>. Torque feedforward parameters are shown in <u>Table 7-10</u>.

Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.

Functio n code	Name	Adjustment description
P02-09	Speed feedforward gain	When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward
P02-10	Speed feedforward filtering time constant	speed will be reduced according to the value of speed feedforward gain as the formula below. Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100 - speed feedforward gain [%])÷100

Table 7-9 Speed feedforward parameters



Function code	Name	Adjustment description				
P02-11	Torque feedforward gain	Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when				
P02-12	Torque feedforward fil- tering time constant	driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addi- tion, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.				

Table 7-10 Torque feedforward parameters

Model Tracking Control Function

Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:

The usage method and conditions of model tracking control:

1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.

2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~21 under rigid load).

3. Set P2-20=1 to enable the function of model tracking control.

4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.

5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.

Note: Model tracking control is only available in position mode, and cannot be used in other modes.

Fun ctio n cod e	Name	Sett ing met hod	Effe ctiv e time	De fa ult val ue	Ra ng e	Definition	Unit
------------------------------	------	---------------------------	---------------------------	------------------------------	---------------	------------	------

P2- 20	Enabl e model track- ing control func- tion	Shu tdo wn set- ting	Effe ctive im- me- di- ately	0	0 to 1	When the function code is set to 1, enable the model track- ing control function.	
P2- 21	Model trackin g cont rol gai n	Shu tdo wn set- ting	Effe ctive im- me- di- ately	10 00	20 0 t 0 20 00 0	Increasing the model tracking control gain can improve the po- sition response performance of the model loop. If the gain is too high, it may cause over-	0.1/s
P2- 22	Model track- ing control gain com- pen- sation	Shu tdo wn set- ting	Effe ctive im- me- di- ately	10 00	50 0 t 0 2 00 0	shoot behavior. The gain com- pensation af- fects the damp- ing ratio of the model loop, and the damping ra- tio becomes larger as the gain compensa- tion becomes larger.	0.10%

Fun ctio n cod e	Name	Sett ing met hod	Effe ctiv e time	De fa ult val ue	Ra ng e	Definition	Unit
P2- 23	Model track- ing control for- ward rota- tion bias	Ope ra- tion set- ting	Effe ctive im- me- di- ately	10 00	0 t o 1 00 00	Torque feedfor- ward size in the positive and re- verse direction under model tracking control	0.10%

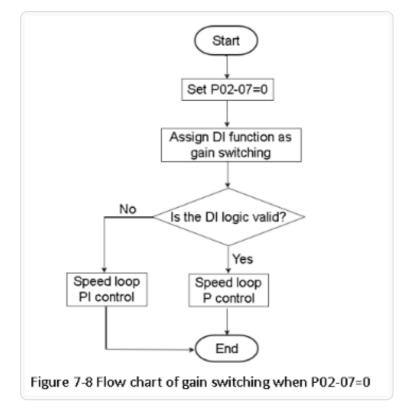
P2- 24	Model track- ing control re- verses rota- tion bias	Ope ra- tion set- ting	Effe ctive im- me- di- atel y	10 00	0 t o 1 00 00	0.10%	
P2- 25	Model track- ing control speed feed- for- ward com- pen- sation	Ope ratio n se tting	Effe ctive im- me- di- atel y	10 00	0 t o 1 00 00	The size of the speed feedforward under model tracking control	0.10%

Please refer to the following for an example of the procedure of adjusting servo gain.

St ep	Content
1	Please try to set the correct load inertia ratio parameter P3-1.
2	If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
3	Turn on the model tracking function, set P2-20 to 1.
4	Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring.
5	If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
6	When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.

Gain switching

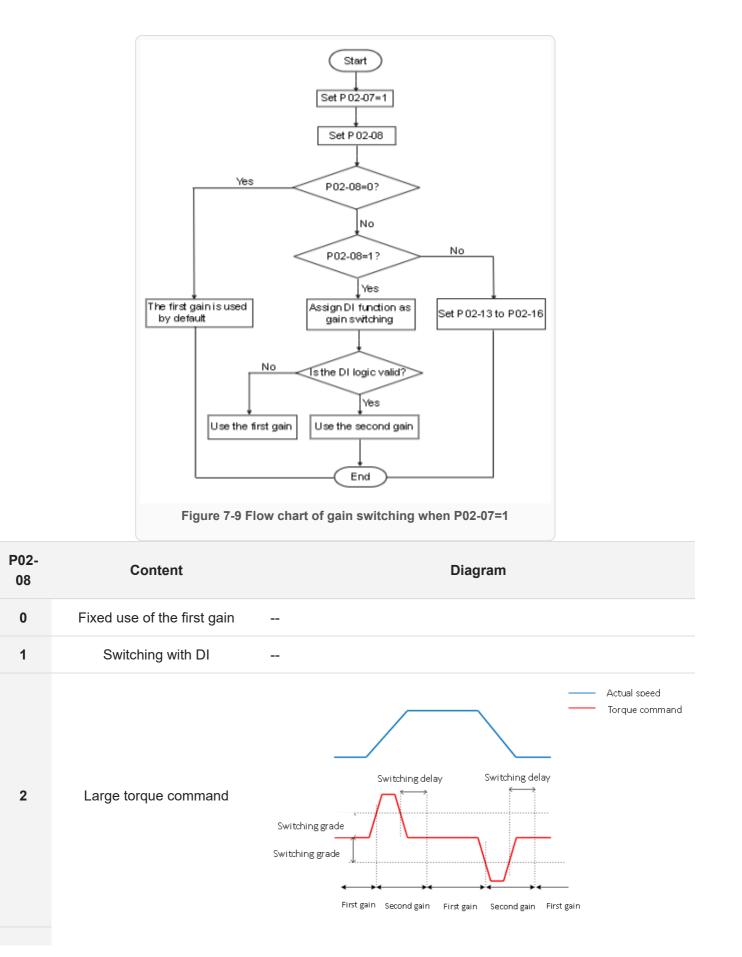
Gain switching function:

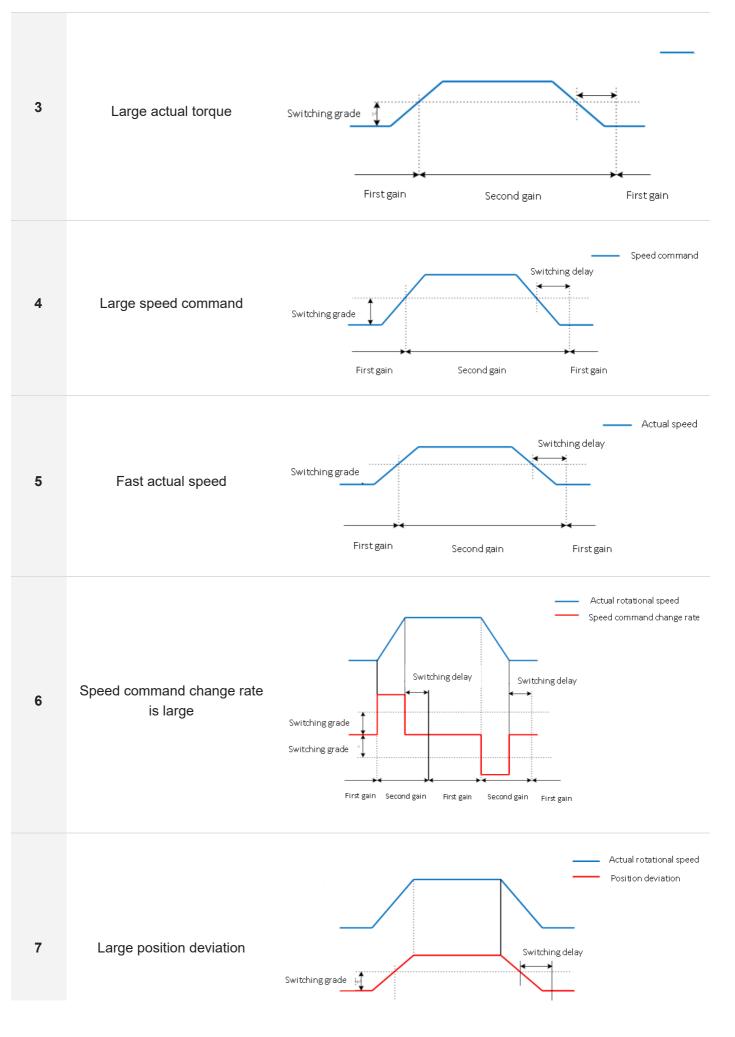

• Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;

- Switch to a higher gain in the motor stationary state to shorten the positioning time;
- Switch to a higher gain in the motor running state to get better command tracking performance;
- Switch different gain settings by external signals depending on the load connected.

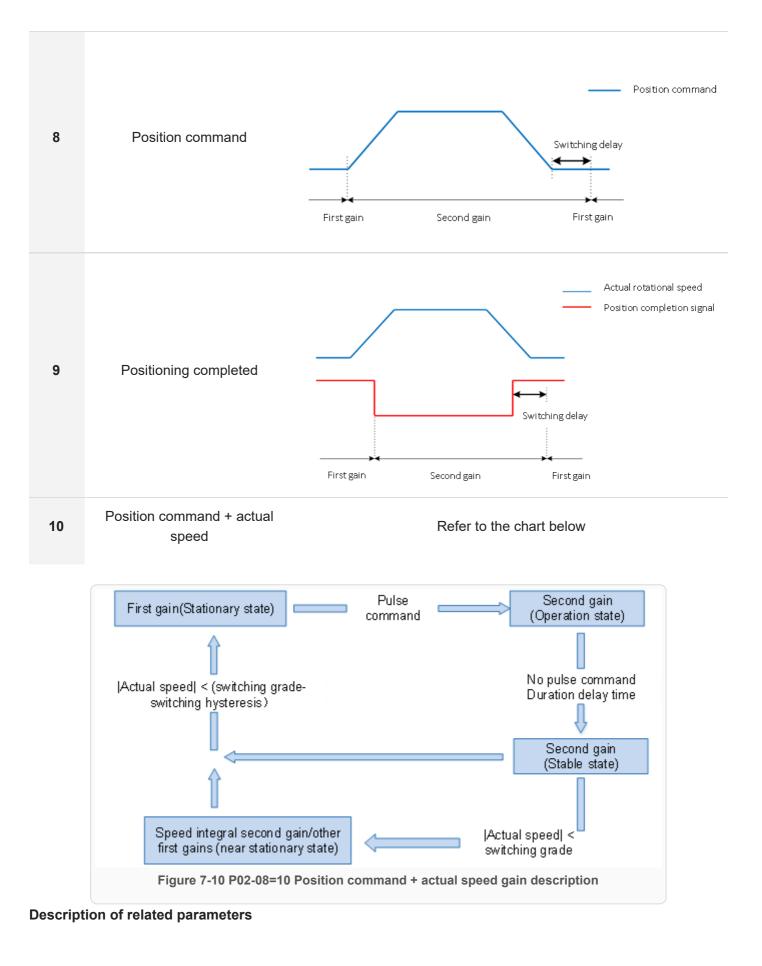
Gain switching parameter setting

①When P02-07=0


Fixed use of the first gain (using P02-01~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).


② When P02-07=1

The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~P02-03) and the second gain (P02-04~P02-06).


07 Adjustments

07 Adjustments

07 Adjustments

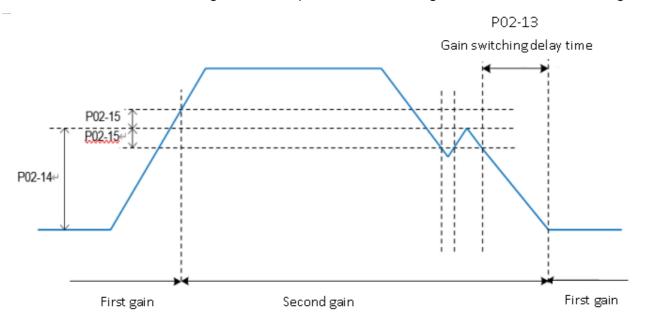
	Parameter name	Setting method	Effective time	Default	Set range	Applicatio n category	Unit
P02-07	The second gain switching mode	Operation setting	Effective immedi- ately	0	0 to 1	Gain control	

Set the switching mode of the second gain.

Sett ing val ue	Function
0	The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching): DI logic invalid: PI control; DI logic valid: PI control.
1	The first gain and the second gain are switched by the setting value of P02-08.

P02-08	Parameter name	Setting method	Effective time	Default	Set range	Applicati on category	Unit
	Gain switching condi tion selection	Operation setting	Effective immedi- ately	0	0 to 10	Gain control	

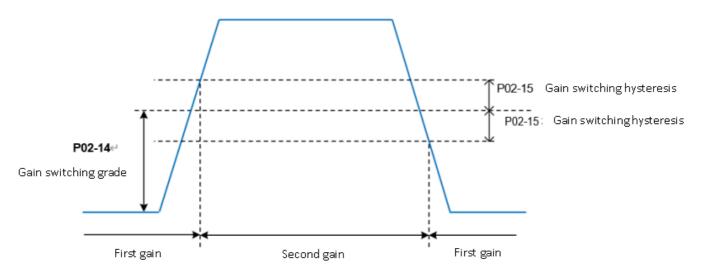
Set the conditions for gain switching.


Sett ing val ue	Gain switch- ing conditions	Details	
0	The default is the first gain	Fixed use of the first gain	
1	Switch by DI port	Use DI function 10 (GAIN-SEL, gain switching); DI logic is invalid: the first gain (P02-01~P02-03); DI logic is valid: the second gain (P02-04~P02-06).	

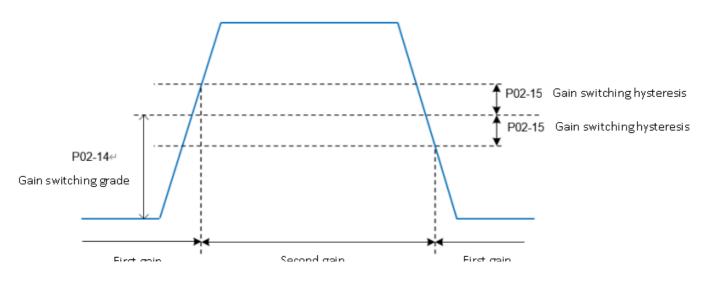
2	Large torque command	In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
3	Large actual torque	In the previous first gain, when the absolute value of actual torque is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
4	Large speed command	In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
5	Large actual speed	In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
6	Large rate of change in speed command	In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
7	Large posi- tion deviation	In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of posi- tion deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
8	Position command	In the previous first gain, if the position command is not 0, switch to the second gain; In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
9	Positioning	

	complete	In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
	Position	In the previous first gain, if the position command is not 0, the second gain is switched;
10	command + actual speed	In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than (grade - hysteresis).

P02-13	Parameter name	Setting method	Effective time	Default	Set range	Applicatio n category	Unit
FU2-13	Delay Time for Gain Switching	Operation setting	Effective immedi- ately	20	0 to 10000	Gain control	0.1ms

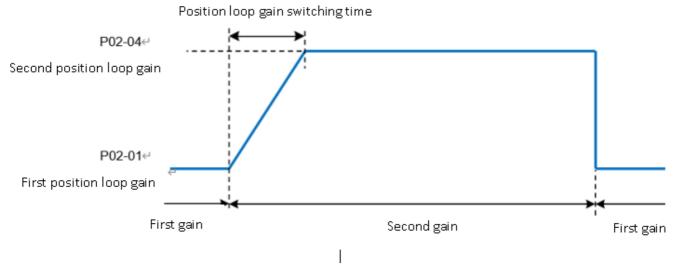

The duration of the switching condition required for the second gain to switch back to the first gain.

Note: This parameter is only valid when the second gain is switched back to the first gain.


	Parameter name	Setting method	Effective time	Default	Set range	Applicatio n category	Unit
P02-14	Gain switch- ing grade	Operation setting	Effective immedi- ately	50	0 to 20000	Gain control	According to the switching conditions

Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.

	Parameter name	Setting method	Effective time	Default	Set range	Applicatio n category	Unit
P02-15	Gain switch- ing hysteresis	Operation setting	Effective immedi- ately	20	0 to 20000	Gain control	According to the switching conditions


Set the hysteresis to meet the gain switching condition.

P02-16	Parameter name	Setting method	Effective time	Default	Set range	Applicatio n category	Unit
F02-16	Position loop gain switching time	Operation setting	Effective immedi- ately	30	0 to 10000	Gain control	0.1ms

Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.

If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.

Mechanical resonance suppression

Mechanical resonance suppression methods

When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.

Torque instruction filter

By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:

Filter cutoff frequency
$$fc(Hz) = \frac{1}{2\pi * \text{Set parameter value} * 0.001}$$

Notch filter

The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in <u>Figure 7-3</u>.

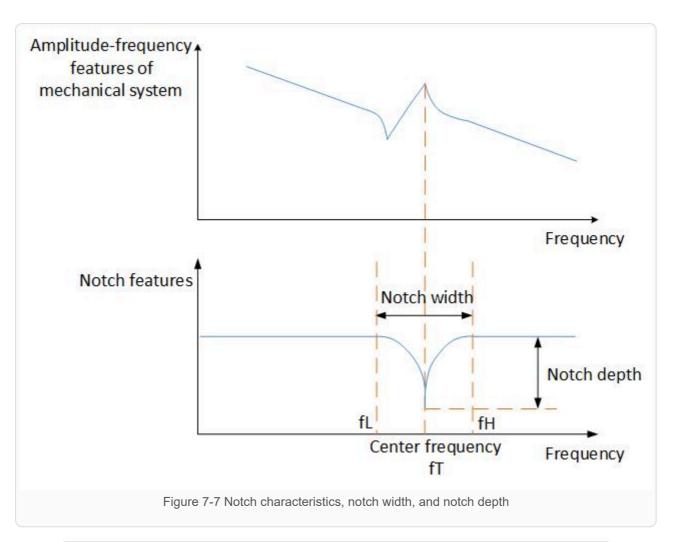
Notch filter

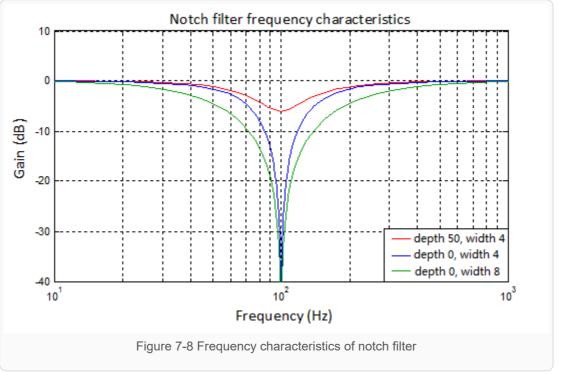
The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.

Width grade of notch filter

The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:

Notch-filter-width-grade =
$$\frac{f_H - f_L}{f_T} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow (7-1)_{+}$$

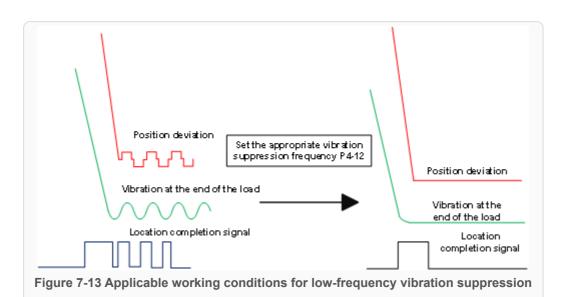

In formula (7-1), f_T is the center frequency of notch filter, that is, the mechanical resonance frequency; $f_H - f_L$ is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of -3dB relative to the center frequency of notch filter.


Depth grade of notch filter

The depth grade of notch filter represents the ratio relationship between input and output at center frequency.

When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in <u>Figure 7-4</u>.

07 Adjustments


Functio n code	Name	Setting method	Effectiv e time	Defau It value	Range	Definition	Unit
-------------------	------	-------------------	--------------------	----------------------	-------	------------	------

P04-05	1st notch fil- ter frequency	Opera- tion setting	Effective immedi- ately	300	250 to 5000	Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.	Hz
P04-06	1st notch fil- ter depth	Operati on setting	Effective immedi- ately	100	0 to 100	1. 0: all truncated 2. 100: all passed	-
P04-07	1st notch fil- ter width	Operati on setting	Effective immedi- ately	4	0 to 12	 0: 0.5 times the bandwidth 4: 1 times the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth 	-
P04-08	2nd notch filter frequency	Operati on setting	Effective immedi- ately	500	250 to 5000	Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.	Hz
P04-09	2nd notch filter depth	Operati on setting	Effective immedi- ately	100	0 to 100	1. 0: all truncated 2. 100: all passed	-
P04-10	2nd notch filter width	Operati on setting	Effective immedi- ately	4	0 to 12	 0: 0.5 times the bandwidth 4: 1 times the bandwidth 8: 2 times the bandwidth 12: 4 times the bandwidth 	-

Table 7-11 Notch filter function code parameters

Low frequency vibration suppression

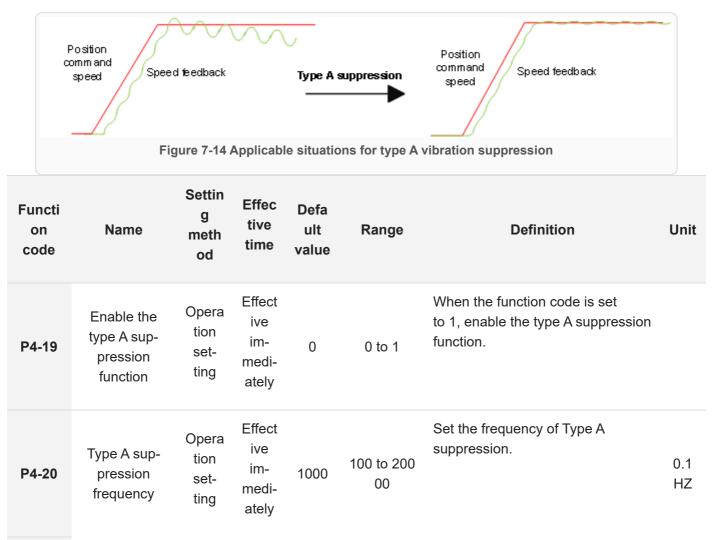
Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.

Functi on code	Name	Settin g metho d	Effectiv e time	Defau It value	Rang e	Definition	Unit
P4-11	Enable low-fre- quency vibration suppression function	Operat ion setting	Effective immedi- ately	0	0 to 1	When the function code is set to 1, enable the low-frequency vibration suppression function.	
P4-12	Low-frequency vibration sup- pression frequency	Operat ion setting	Effective immedi- ately	800	10 to 2000	Set the vibration frequency when vibration occurs at the load end.	0.1H Z
P4-14	Shutdown vibra- tion detection amplitude	Operat ion setting	Effective immedi- ately	100	0 to 10 00	When the vibration amplitude is greater than (P5-12*P4-14 de- tection amplitude ratio), the low- frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.	0.001

Vibration frequency detection:

- Users can measure vibration by measuring equipment such as laser displacement.
- If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
- Low-frequency vibration detection needs to be coordinated by the two parameters of completion
 positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P512*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and
 updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P512*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration
 amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be
 identified in U0-16.

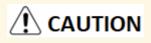
Debugging method:


- Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
- Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
- Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
- Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.

Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!

Type A vibration suppression

Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.


P4-21	Type A sup- pression gain correction	Oper- ation set- ting	Effec- tive im- medi- ately	100	0 to 1000	Correct the load inertia ratio size.	0.01
P4-22	Type A sup- pression damping gain	Opera tion set- ting	Effect ive im- medi- ately	0	0 to 500	The type A rejection compensation value is gradually increased until the vibration is reduced to the ac- ceptable range.	0.01
P4-23	Type A sup- pression phase correction	Opera tion set- ting	Effect ive im- medi- ately	200	0 to 900	Type A suppression phase compensation.	0.1 de- gree

Vibration frequency detection:

The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.

Debugging method:

- Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
- Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
- Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. (Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
- Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
- Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
- When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~300.

Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!

08 Communication

The VD2 series servo drive has Modbus communication function, which could cooperate with the host computer for parameter modification, parameter query, monitoring volume servo status query and control. The servo drive is used as a slave device.

Modbus communication

Hardware wiring

The position of RS485 communication port (take VD2B as an example) is as the figure below.

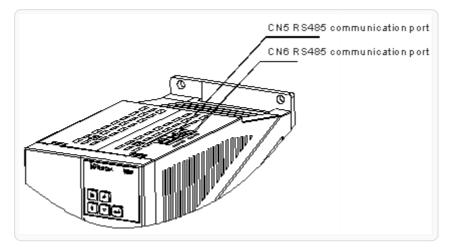


Figure 8-1 The position of RS485 communication port of VD2B drive

For the position of the RS485 communication port of other models, see <u>4.5 Communication signal wiring</u>.

The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.

The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together!

Solution Notice that the same time is a serve of the same time. If two or more serve drives upload data at the same time, bus competition will occur. Not only will it lead to communication failure, it may also cause some components to generate large currents and damage the components.

08 Communication

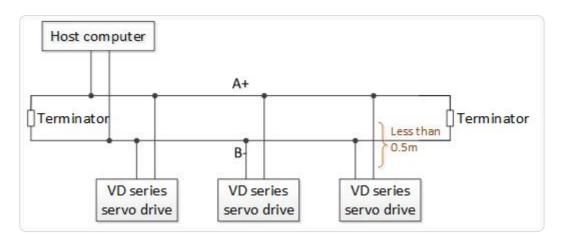


Figure 8-2 RS485 communication network wiring diagram

The terminal of RS485 network should use a terminating resistors of 120Ω to weaken the reflection of the signal. Intermediate networks cannot use terminating resistors.

No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.

When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.

Modbus communication protocol analysis

Modbus data frame format

The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.

There should be a message interval not less than 3.5 characters at the	Address	Function code	Data	CRC check code	
beginning	1 byte	1 byte	N bytes	2 bytes	

Supported function codes

The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:

Operate	Command code
Read 16-bit/32-bit function code	0x03
Write 16-bit function code	0x06

Write 32-bit function code	0x10

Read function code: 0x03

Request format:

Address Function code		Initial a	ddress	Number	of reads	CRC check code	
		high byte low byte		high byte low byte			
1 byte	03	1 byte	1 byte	1 byte	1 byte	2 bytes	

Correct response format:

Addre			Registe	er 1	 CRC check code	
SS	code	code turned data		low byte	code	
1 byte	03	1 byte	1 byte	1 byte	 2 bytes	

Write function code: 0x06

Request format:

Address	Function code	Register ad	Register address			CRC check code	
		high byte	low byte	high byte	low byte		
1 byte	06	1 byte	1 byte 1 byte		1 byte	2 bytes	

Response format:

Address	Function code	Register	Register address		ta	CRC check code
		high byte low byte		high byte low byte		
1 byte	06	1 byte	1 byte	1 byte	1 byte	2 bytes

If the setting is successful, the original is returned

There should be a message interval not less than 3.5 characters at the beginning	Address	Function code	Data	Data CRC check code		
	1 byte	1 byte	N bytes	2 bytes		

CRC check

The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:

```
{
Uint16 crc = 0xffff;
Uint16 i;
while(uLen--)
{
 crc ^=(Uint16) *pBuf++;
for(i=0; i<8; i++)</pre>
{
if(crc & 0x0001)
{
crc = (crc >> 1) ^ 0xa001;
}
else
{
crc = crc >> 1;
}
}
}
return crc;
}
return crc;
}
```

Error response frame

Address	Function code	Error code	CRC check code
1 byte	Command code+0x80	Error code	2 bytes

When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.

Error code	Coding description
0x0001	Illegal command code
0x0002	Illegal data address
0x0003	Illegal data
0x0004	Slave device failure

Communication example

03 Function code read

Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)

Request format:

Ac	dress	Function code	Register address		Da	ita	CRC check code
			high byte low byte		high byte low byte		
01		03	1E	24	00	01	C2 29

The slave responds normally:

Address	Function code	Number of bytes	Data		CRC high byte
			high byte low byte		
01	03	02	0C	4F	FC B0

For example: The value read is 0x0C4F, which means that the voltage is 315.1V.

06 Function Code Write

P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)

Request format:

Address	Function code	Register address		Da	ata	CRC check code
		high byte low byte		high byte low byte		
01	06	01	01 0A		B8	AF, 76

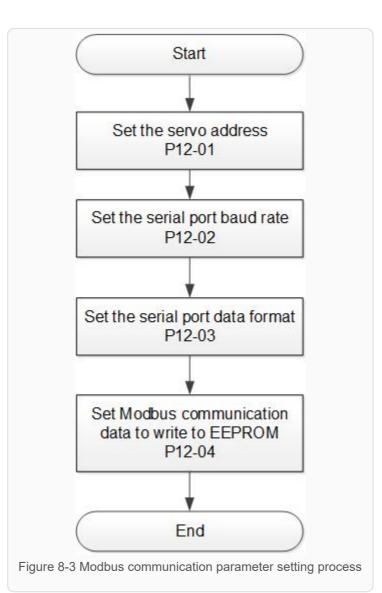
The slave responds normally:

Address	Function code	Register	Register address		ita	CRC check code
		high byte low byte		high byte	low byte	
01	06	01 0A		0B	B8	AF, 76

10 Function code write

P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).

Request format:


Add ress	Functio n code		tial ress		oer of ster	Number of data	Dat	ta 1	Dat	a 2	CRC (co	
		high byte	low byte	high byte	low byte		high byte	low byte	high byte	low byte	high byte	low byte
01	10	07	09	00	02	04	00	00	07	D0	16	59

The slave responds normally:

Address	Function code	Register	address Data		nta	CRC check coc	
		high byte	low byte	high byte	low byte	high byte	low byte
01	10	07	09	00	02	90	BE

Servo communication parameter setting

08 Communication

Set the servo address P12-1

When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.

Set the serial port baud rate P12-2

The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.

Set the serial port data format P12-3

The data bit check methods of servo communication are:

- Odd parity
- Even parity
- No parity
- The stop bit: 1 stop bit and 2 stop bits.

The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.

Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]

When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.

If the value of the function code only needs to be rewritten once, and the value is used later, the function of realtime writing of the function code to EEPROM can be enabled.

If you need to change the value of the function code frequently, it is recommended to turn off the function of realtime writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.

After the EEPROM is damaged, the servo will have an non resettable fault!

Set the high and low order of the 32-bit monitoring data

Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!

For example, U0-54 (position within 1 circle of absolute encoder) occupies two consecutive offset numbers, which are 0x1E3D and 0x1E3E respectively. Assuming the value of U0-54 is 0x12345678, the correct data sequence bit should be 0x1E3D=0x5678, 0x1E3E=0x1234 (little endian mode: low byte first, high byte behind.)

The description of related function codes are as follows.

Function code	Name	Setting method	Effective time	Default value	Rang e	Definition	Uni t
P12-02	Baud rate	Operation setting	Effective immediately	2	0 to 5	 0: 2400bps 1: 4800bps 2: 9600bps 3: 19200bps 4: 38400bps 5: 57600bp 	-
P12-03	Serial data format	Operation setting	Effective immediately	0	0 to 3	 0: 1 stop bit, no parity 1: 1 stop bit, odd parity 2: 1 stop bit, even parity 3: 2 stop bits, no parity 	-
P12-04	Modbus communica- tion						

	data is written into EEPROM	Operation setting	Effective immediately	0	0 to 1	 0: Do not write to EEPROM, and do not store after power failure; 1: Write to EEPROM, power-down storage.
--	--------------------------------	----------------------	--------------------------	---	--------	---

Modbus communication variable address and value

Variable address

Modbus registers are divided into two categories:

- 1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
- 2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).

Servo function code representation: PXX-YY.

- XX: represents the function code group number,
- YY: represents the bias within the function code group;;

During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.

Servo monitor volume representation: Uxx-yy.

- xx: represents the monitoring volume group number,
- yy: represents the bias within the monitoring volume group;

During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.

For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.

In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:

Function code	Modbus address (Hexadecimal)	Modbus address (Decimal)	Category	Name
P0-1	0x0001	1	Basic settings	Control mode

For detailed parameter addresses, please refer to "11.1 Lists of parameters".

Variable value type

When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:

- 1. The data is positive or 0: complement code = original code
- 2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001

For example:

- The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
- The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
- If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.

Numerical unit description

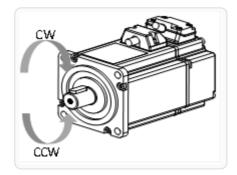
Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:

- 1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
- 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;

The other units can be deduced by this, and integer remains unchanged.

09 Parameters

Group P00 Basic settings


P00-		rameter name	Setting method	Effective time	Defaul t	Rang e	Category	Uni t	
01	Cont	rol mode	Shutdown setting	Effective immediately	1	1 to 6	Basic setting	-	
Used to	ed to set the control mode of servo drive								
Set ting val ue	Cont rol mod e		Remarks						
1	Positi on con- trol	For positio	n control parameter	setting, please ref	er to <u>6.2 Positi</u>	<u>on contrc</u>	<u>ol mode</u> ⊡		
2	Spee d con- trol	For speed control parameter setting, please refer to <u>6.3 Speed control mode</u> Iª							
3	Torq ue con- trol	For torque	control parameter s	etting, please refe	r to <u>6.4 Torque</u>	control n	<u>node</u> ⊡"		
	Positi		nal of the servo drive ction), and the DI te			-	ModeSel, mixe	d	
	on/sp eed	Mi	xModeSel termina	logic	Co	ontrol mo	ode		
4	mix	Invalid Position control							
	con- trol	Valid Speed control							
5	Positi on/to rque mix con-								

		MixModeSel terminal logic	Control mode
	trol	Invalid	Position control
		Valid	Torque control
	Spee d/tor	A DI terminal of the servo drive needs to be a mode selection), and the DI terminal logic is a MixModeSel terminal logic	-
6	que mix	Invalid	Speed control
	con- trol	Valid	Torque control

P00-	Parameter name	Setting method	Effective time	Defaul t	Rang e	Category	Uni t
04	Rotation direction	Shutdown setting	Effective immediately	0	0 to 1	Basic setting	-

Set the forward rotation direction of the motor when looking at the motor axis.

Setting value	Rotation direction	Remarks
0	Take CW as forward direction	When looking at the motor axis, the rotation direction of the motor is clockwise
1	Take CCW as forward direction	When looking at the motor axis, the rotation direction of the motor is anticlockwise

P00-	Parameter name	Setting method	Effective time	Defau It	Ran ge	Category	Un it	
05	Servo OFF shutdown method	Shutdown setting	Effective immediately	0	0 to 1	Basic setting	-	

Set the forward rotation direction of the motor when looking at the motor axis.

Setting value	Shutdown method	Remarks
0	Free shutdown. The motor shaft re- mains free	Please set reasonable shutdown according to the machinery and running requirement. Please refer to <u>6.1.7 Servo shutdown</u>
1	Zero-speed shutdown. The motor shaft re- mains free	

P00-	Parameter name	Setting method	Effective time	Defau It	Rang e	Category	Uni t
09	Braking resistor setting	Operation setting	Effective immediately	0	0 to 3	Basic setting	-

Used to set the way in which braking energy is absorbed and released.

Setting value	Braking resistor setting	Remarks
0	Use built-in braking resistor	Please refer to <u>6.1.5 Braking resistor</u> I to
1	Use external braking resistor and natural cooling	choose the right braking method
2	Use external braking resistor and forced air cooling (not settable)	
3	No braking resistors are used, and all are absorbed by capacitance	

Note: VD2-010SA1G and VD2F-010SA1P drives has no built-in braking resistor by default, so the default value of P00-09 is 3 (No braking resistors are used, and all are absorbed by capacitance).

P00-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Un it
10	External braking resistor value	Operation setting	Effective immediately	50	0 to 65535	Basic setting	Ω

Used to set the power of external braking resistor of servo drive.

When the maximum braking energy calculated value is greater than the maximum braking energy absorbed by capacitor, and the braking power calculated value is greater than the built-in braking resistor power, external braking resistors are required.

If the value of P00-10 is too large, Er.25 (too large braking resistor value) or Er.22 (main power supply is over voltage) will occur.

When using an external braking resistor, the short wiring between C and D must be disconnected, and the external braking resistor should wiring between P+ and D.

P00-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Un it
11	External braking resistor power	Operation setting	Effective immediately	100	0 to 65535	Basic setting	W

Used to set resistor value of external braking resistor of servo drive. The power of external braking resistor (P00-11) can not less than the braking resistance power calculation value.

P00-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Un it
12	Position pulse type selection	Operation setting	Power-on again	0	0 to 5	Position mode	-

In position control mode, when position instruction source is pulse instruction (P01-06=0), input pulse pattern.

Setting value	Pulse pattern	Remarks				
0	Direction + pulse(positive logic)	Please refer to <u>Table 6-15</u> in <u>6.2.1 Position in-</u>				
1	CW/CCW	struction input setting				
2	AB phase orthogonal pulse (4 times frequency)					
3	Direction + pulse (negative logic)					
4	CW/CCW (negative logic)					

5	AB phase orthogonal pulse (4 times fre-	Please refer to Table 6-15 in 6.2.1 Position in-
5	quency negative logic)	struction input setting

P00-	Parameter name	Setting method	Effective time	Defa ult	Rang e	Category	Un it
13	Maximum position pulse frequency	Shutdown setting	Effective immediately	300	1 to 500	Position mode	K Hz

In position control mode, when position instruction source is pulse instruction (P01-06=0), input the maximum frequency of pulse. When the actual pulse input frequency is greater than the setting value of P00-13, A-86 would occurs (The input pulse frequency is too high).

P00-14	Parameter name	Setting method	Effective time	Defa ult	Rang e	Category	U ni t
	Position pulse anti-interfer- ence level	Operation setting	Power-on again	2	0 to 9	Position mode	-

In position control mode, filter the input pulse. The larger the P00-14 setting value, the greater the filter depth.

Setting value	Filtering time	Setting value	Filtering time		
0	No filtering	5	2.048us		
1	128ns	6	4.096 us		
2	256ns	7	8.192 us		
3	512ns	8	16.384 us		
4	1.024us	9	VD2: 32.768us. VD2F: 25.5us		

P 0	Paramete r name	Setting method	Effective time	De fa ult	Ra ng e	Cate gory	Unit
0- 1 6	Number of instruction pulses per turn of motor	Shutdow n setting	Effective immedi- ately	10 00 0	0 to 13 10 72	Positi on mode	W

I load to get the number of instruction nulses required for nor turn of mater

P 0 0	Paramete r name	Settin g meth od	Effective time	D ef a ul t	Rang e	Cat ego ry	Unit
- 1 7	Electronic gear 1 numerator	Opera tion- set- ting	Effective immedi- ately	1	1 to 4294 9672 94	Pos itio n mo de	W

Used to set the numerator of the first group electronic gear for position instruction. This function code is only valid when P00-16=0.

P 0 0	Paramet er name	Settin g metho d	Effective time	D ef a ul t	Ran ge	Cat ego ry	Unit
- 1 8	Electronic gear 1 denomi- nator	Opera tion setting	Effective immedi- ately	1	1 to 4294 9672 94	Pos ition mo de	W

Used to set the numerator of the first group electronic gear for position instruction. This function code is only valid when P00-16=0.

P 0 0	Paramet er name	Setting method	Effective time	D ef au It	Ran ge	Cat ego ry	Unit
- 1 9	Electroni c gear 2 numera- tor	Operatio n setting	Effective immedi- ately	1	1 to 4294 9672 94	Posi tion mod e	W

Used to set the numerator of the second group electronic gear for position instruction. This function code is only valid when P00-16=0.

P 0	Paramet er name	Settin g metho d	Effectiv e time	D ef au It	Rang e	Cate gory	Unit
0- 2 0	Electronic gear 2 denomi- nator	Operat ion setting	Effective immedi- ately	1	1 to 4294 9672 94	Posit ion mod e	W

Used to set the numerator of the second group electronic gear for position instruction. This function code is only valid when P00-16=0.

P 0	Paramet er name	Setting method	Effecti ve time	Defa ult	Ra nge	Categ ory	Unit					
0- 2 1 ☆	Pulse fre- quency division output direction	Operation setting	Power- on again	2	0 to 1	Positio n mode	-					
Use	d to set the	pulse freque	ncy divisio	on outpu	ıt direc	tion						
	Setting	value		Output direction								
	0			CW is forward direction (A is ahead of B)								
	1			CCW is forward direction (A is ahead of B)								

" \Rightarrow " indicates that the VD2F servo drive does not support this function code.

P0 0-	Parameter name	Setting method	Effect ive time	Def aul t	Ra ng e	Cat ego ry	Unit
22 ☆	The number of output pulses per turn of motor	Operati on setting	Power -on again	250 0	0 to 25 00	Pos ition mo de	-

Note: Each rotation of the motor, phase A and phase B can each output up to 2500 pulses, and the control device receiver device needs to support 4 times frequency analysis to get 10000 pulses.

"☆" indicates that the VD2F servo drive does not support this function code.

P 00 -2	Paramet er name	Setting method	Effecti ve time	De fau It	Ran ge	Cat ego ry	Unit
-2 3 ☆	Z pulse output OZ polarity	Operatio n setting	Power- on again	2	0 to 1	Posi tion mod e	-

Used to set the level logic of Z pulse

Setting value	Output direction
0	Active high level
1	Active low level

P 0	Para me- ter nam e	Settin g metho d	Effecti ve time	De fau It	Rang e	Cat ego ry	Unit
0- 2 5	Posit ion devi- ation limit	Shutd own setting	Effecti ve imme- diately	60 00 0	0 to 21474 83646	Pos itio n mo de	Equivalent pulse unit

Used to set position deviation limit value. When the actual deviation of motor exceeds the setting value of this function code, Er.36 would occurs (position deviation is too large).

When the function code is set to 0, positional bias is ignored.

P 0 0-	Parameter name	Setting method	Effect ive time	D ef a ul t	Ra ng e	Ca te go ry	Unit
2 7 ☆	Pulse output frequency divi- sion numerator	Operatio n setting	Power -on again	1	1 to 25 00	Po siti on m od e	-

Orthogonal coded output (numerator/denominator format). Used to set pulse output frequency division numerator. (When P00-22=0, and the pulse output frequency division numerator value is less than the pulse output frequency division denominator value, this function code is valid)

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P 0 0- 2	Parameter name	Setting method	Effect ive time	D e f a u It	Ra ng e	Category	Unit
8 ☆	Pulse output frequency divi- sion denominator	Operatio n setting	Power -on again	1	1 to 250 0	Position mode	-

Orthogonal coded output (numerator/denominator format). Used to set pulse output frequency division denominator. (When P00-22=0, and the pulse output frequency division denominator value is greater than the pulse output frequency division numerator value, this function code is valid)

"☆" indicates that the VD2F servo drive does not support this function code.

P 0	Parameter name	Settin g metho d	Effecti ve time	Def aul t	Ran ge	Category	Unit
0- 2 9	The number of equivalent po- sition units in one circle	Shutdo wn setting	Effecti ve imme- diately	10 00 0	0 to 131 072	Position mode	-
The	equivalent positio	on unit of o		of the m	notor		

P 0 0-	Parameter name	Settin g metho d	Effecti ve time	Def aul t	Ra ng e	Category	Unit
3 0	Shielded multi- turn absolute encoder battery failure	Operati on setting	Power- on again	0	0 to 1	Basic setting	-

Used to set multi-turn absolute encoder battery fault alarm setting function. (VD2-SA V1.13 firmware added)

Settin g value	Fun ctio n	Remarks
0	Shie Id	Detect multi-turn absolute encoder battery under voltage and battery low-voltage fault. Please refer to <u>6.6 Absolute system</u> I.
1	Not shiel d	Shield multi-turn absolute encoder battery under voltage and battery low-voltage fault. This would cause mechanical failure, please use with caution.

P 0 0	Parame ter name	Setting method	Effective time	Default	Range	Category	Unit
- 3 1	Encoder read- write check abnor- mal fre- quency	Operation setting	Effective immediately	20	0 to 100	Basic setting	-

0: no alarm

Other values: After exceeding this set value, A93 encoder read/write verification abnormal frequency warning will be reported.

Group P01 Control parameters

P01-	Parameter name	Setting method	Effective time	Defaul t	Rang e	Category	Uni t
01	Speed instruction source	Shutdown setting	Power-on again	0	0 to 1	Speed mode	-

Select speed instruction source

Setting value	Function	Remarks
0	Internal speed instruction	Please refer to 6.3.1 Speed instruction input setting
1*	AI_1 analog input	External speed instruction. Please refer to <u>4 Wiring</u> .

"*" indicates that the VD2F servo drive does not support this function code.

P01- 02	Parameter name	Setting method	Effective time	Default	Range	Categ ory	Unit
	Internal speed in- struction 0	Operation setting	Effective immediately	-5000 to 5000	Speed mode	rpm	-5000 to 5000*

Used to set speed value of internal speed instruction when servo drive is in speed control mode, and only valid when P01-01=0. "*" indicates that the setting range of VD2F servo drive.

P01-	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
03	Acceleration time	Operation setting	Effective immediately	50	0 to 65535	Speed mode	ms

The time that the speed instruction accelerates from 0 to 1000 rpm.

Please refer to 6.3.2 Acceleration and deceleration time setting

P01-	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
04	deceleration time	Operation setting	Effective immediately	50	0 to 65535	Speed mode	ms
The time that the speed instruction decelerates from 1000 to 0 rpm.							
Please r	efer to <u>6.3.2 Accele</u>	ration and deceler	ation time setting				

P01- 05	Parameter name	Setting method	Effective time	Defau It			Un it	
	Shutdown deceleration time	Shutdown setting	Effective immediately	50	0 to 65535	-	ms	

The time for the speed command to decelerate from 1000rpm to 0

P 01	Paramet er name	Setting method	Effective time	D ef a ul t	Ra nge	Ca teg or y	Unit
01 -0 6	Position instruc- tion source	Operatio n setting	Effective immedi- ately	0	0 to 1	-	_

Used to select position instruction source when servo drive is in position control mode.

Setting value	Instruction source	Remarks
0	Pulse instruction	Pulse instructions are generated by PLC or other pulse generator and input to servo drive via the hardware terminals. Please refer to <u>6.2.1 Position instruction</u> input setting
1	Internal posi- tion instruction	The internal multi-segment position instruction is triggered by DI function 20 (in- ternal multi-segment position enable signal). Please refer to <u>internal multi-seg-</u> <u>ment position function</u>

"*" indicates that the VD2F servo drive does not support this function code.

	Parameter name	Setting method	Effecti ve time	Def ault	Ra ng e	Category	Unit
P01-07	Torque instruction source	Shutdown setting	Effectiv e immedi- ately	0	0 to 1	Torque mode	-

Used to select torque instruction source when servo drive is in torque control mode.

Setting value	Instruction source	Remarks	
0	Internal torque instruction	Please refer to 6.4.1 Torque instruction input setting	

4.4		
1*	AI_1 analog input	Please refer to <u>4 Wiring</u>

"*" indicates that the VD2F servo drive does not support this instruction source

P01	Parameter name	Setting method	Effecti ve time	Default	Rang e	Cat eg ory	U ni t
-08	Torque instruction key- board setting value	Operation setting	Effectiv e imme- diately	0	-3000 to 3000		0. 1 %

Used to set the required torque instruction value when P01-07 is set to 0 (internal torque instruction).

	Param eter name	Setting method	Effective Default time		Range	Catego ry	U n it
P01 -09	Speed limit source in torque mode	Shutdown setting	Effective immediately	0	0 to 1	Torque mode	-

Used to set speed limit source when servo drive is in torque control mode.

Setting value	Instruction source	Remarks
0	Internal instruction	Please refer to 6.4.4 Speed limit in torque mode
1*	Al_2 analog input	Please refer to <u>4 Wiring</u>

"*" indicates that the VD2F servo drive does not support this instruction source.

P01-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	U nit
10	Maximum speed threshold	Operation setting	Effective immediately	3600	0 to 5000	Protection and restriction	rp m

Used to set the maximum speed limit value. If the actual speed of motor exceeds this value, Er.32 would occur (Exceed the maximum speed of motor).

P 0 1-	Paramete r name	Settin g metho d	Effective time	Default	Range	Category	Unit
11	Warning speed threshold	Operat ion setting	Effective immediately	3300	0 to 5000	Protection and restriction	rpm

Used to set the limit value of maximum speed. If the actual speed of motor exceeds this value, A-81 would occur (Exceed the maximum speed of motor).

P 01 -1 2	Paramet er name	Setting method	Effective time	Defaul t	Range	Category	Uni t
	Forward speed thresh- old	Operation setting	Effective immediately	3000	0 to 5000	Protection and restriction	rpm

Used to set the limit value of forward speed

P0 1- 13	Parame Setting ter method		Effective time	Defaul t	Range	Category	Uni t
	Reverse speed thresh- old	Operation setting	Effective immediately	3000	0 to 5000	Protection and restriction	rpm

Used to set the limit value of reverse speed

Para meter name	Settin g metho d	Effective time	D ef a ul t	Ra ng e	Category	Unit
Torqu e limit sourc e	Shutdo wn setting	Effective immedi- ately	0	0 to 1	Protection and restriction	-
d to selec	t torque in	struction sou	urce w	/hen s	ervo drive is in	torque control mode.
Setting v	alue	Instructio	n sou	rce		Remarks
	meter name Torqu e limit sourc e d to selec	Para meter nameg metho dTorqu e limit sourc eShutdo wn setting	Para meter nameg metho dEffective timeTorqu e limit sourc eShutdo wn settingEffective immedi- atelyd to select torque instruction source	Para meter nameSettin g metho dEffective timeef a ul tTorqu e limit sourc eShutdo wn settingEffective immedi- ately0dto select torque instruction source w	Para meter nameSettin g metho dEffective timeef a ng ul eRa ng ng ul eTorqu e limit sourc eShutdo wn settingEffective immedi- ately0 to 1Torqu eShutdo wn settingEffective immedi- ately0 to 1	Para meter nameSettin g metho dEffective timeef a ng ul eRa a ng eCategoryTorqu e limit sourc eShutdo wn settingEffective immedi- ately0 to 1Protection and restrictiondto select torque instruction source when servo drive is in

0	Internal instruction	Please refer to 6.4.3 Torque instruction limit
1	AI_2 analog input	Please refer to <u>4 Wiring</u>

P 01 -1 5	Param eter name	Setting method	Effective time	Defaul t	Range	Category	Unit
	Forwar d torque limit	Operation setting	Effective immediately	3000	0 to 3000	Protection and restriction	0.1 %

Used to set the limit value of forward speed

P 01	Parame ter name	Settin g metho d	Effective time	Default	Range	Category	Unit
-1 6	Reverse torque limit	Operati on setting	Effective immediately	3000	0 to 3000	Protection and restriction	0.1%

When P01-14 is set to 0 ()internal), the setting value of this function code is reverse torque limit value.

If the value of P01-15 and P01-16 is set too small, the servo motor may be insufficient torque phenomenon when performing acceleration and deceleration movements. Please refer to <u>6.4.3 Torque instruction limit</u>

Р	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
01 -1 7	Forward speed limit in torque mode	Operatio n setting	Effective immediately	3000	0 to 5000	Protection and restriction	rpm

Used to set forward speed limit value in torque control mode. Please refer to <u>6.4.4 Speed limit in torque</u> mode

Р 01	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
-1 8	Reverse speed limit						

in torque mode	Operation setting	Effective immediately	3000	0 to 5000	Protection and restriction	rpm

Used to set reverse speed limit value in torque control mode. Please refer to <u>6.4.4 Speed limit in torque</u> mode

Р0	Parame ter name	Setting method	Effective time	Defau It	Range	Category	Uni t
1- 19	Torque satura- tion timeout	Operation setting	Effective immediately	1000	0 to 65535	Protection and restriction	ms

When torque is limited by the setting value of P01-15 or P01-16, and exceeds the setting time, drive would report fault "torque saturation abnormal".

Note: When this function code is set to 0, saturation timeout fault detection would not be performed, and ignore this fault,

P 01 -2 1	Paramete r name	Settin g metho d	Effecti ve time	De fa ult	R an ge	Categ ory	Unit
	Zero- speed clamp function selection	Operati on setting	Effectiv e imme- diately	0	0 to 3	Speed mode	-

Please refer to 6.3.4 Zero-speed clamp function

Setting value	Function
0	Force speed to 0
1	Force speed to 0, and keep position locked when the actual speed is less than P01-22
2	When the actual speed is less than P01-22, force speed to 0, and keep position locked
3	Invalid. Ignore zero-speed clamp input

P 0	Parameter name	Settin g metho d	Effective time	D ef au It	R an ge	Cat ego ry	Unit
1- 2 2	Zero speed clamp speed threshold	Operati on setting	Effective immedi- ately	20	0 to 50 00	Spe ed mod e	rpm

Used to set the speed threshold of zero-speed clamp function Please refer to <u>6.3.4 Zero-speed clamp</u> <u>function</u> **I**.

P01- 23	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
	Internal speed Instruction 1	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rpm

Used to set the speed value of internal speed instruction 1 To use internal speed instruction 1 to 7, you need to set 3 DI terminals as DI function 13 (INSPD1, internal speed instruction 1) to (INSPD3, internal speed instruction 3). The switch of the internal speed instruction section is realized by controlling the DI terminal logic of the servo control device. The running instruction segment number is 3-bit binary number. The corresponding relationships between internal speed instruction 1 to 3 and running segment number are as below.

INSPD3	INSPD2	INSPD1	Internal speed instruction segment number					
0	0	0	0					
0	0	1	1					
0	1	0	2					
1	1	1	7					

Please refer to 6.3.1 Speed instruction input setting

P01-	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
24	Internal speed Instruction 2	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rp m

Used to set the speed value of internal speed instruction 2.

P01- 25	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
	Internal speed Instruction 3	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rp m

Used to set the speed value of internal speed instruction 3.

P01- 26	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
	Internal speed	Operation	Effective	0	-5000 to	Speed	rp
	Instruction 4	setting	immediately		5000	mode	m

Used to set the speed value of internal speed instruction 4.

P01- 27	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
	Internal speed	Operation	Effective	0	-5000 to	Speed	rp
	Instruction 5	setting	immediately		5000	mode	m

Used to set the speed value of internal speed instruction 5.

P01- 28	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
	Internal speed	Operation	Effective	0	-5000 to	Speed	rp
	Instruction 6	setting	immediately		5000	mode	m

Used to set the speed value of internal speed instruction 6.

P01- 29	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
	Internal speed Instruction 7	Operation setting	Effective immediately	0	-5000 to 5000	Speed mode	rp m

Used to set the speed value of internal speed instruction 7.

P01- 30	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Categ ory	U ni t
	Delay from brake output ON to in- struction reception	Operation setting	Effective immediately	250	0 to 500	-	rp m

Set the delay time from the brake (BRK-OFF) output is ON to the servo drive allows to start receiving input instructions. When the brake output (BRK-OFF) is not allocated, this function code has no effect. Please refer to <u>6.1.8 Brake device</u>.

P0	Parameter name	Setting method	Effective time	Def aul t	Ran ge	Cate gory	U n it
1- 31	Stationary state. delay from the brake output is OFF to the motor is not energized	Operatio n setting	Effective immediately	15 0	1 to 100 0	-	r p m

When the motor is in a static state, set the delay time from the brake (BRK-OFF) output is OFF to the servo drive is in the non-powered state. When the brake output (BRK-OFF) is not allocated, this function code has no effect. Please refer to 6.1.8 Brake device

P0 -32		Setting method	Effective time	Def ault	Ran ge	Cate gory	U ni t
-54	Rotation state, when the brake output is OFF, the speed threshold	Operation setting	Effective immediately	30	0 to 3000	-	rp m

The motor is rotating, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF. When the brake output (BRK-OFF) is not allocated, this function code has no effect. Please refer to 6.1.8 Brake device

P01 -33	Parameter name	Setting method	Effective time	•.	Rang e	Cate gory	U ni t
	Rotation status, delay from servo enable OFF to brake output OFF	Operation setting	500		1 to 1000	-	rp m

The motor is rotating, the delay time from the brake (BRK-OFF) output OFF is allowed to the servo enable (S-ON) OFF. When the brake output (BRK-OFF) is not allocated, this function code has no effect. Please refer to <u>6.1.8 Brake device</u> .

Group P02 Gain adjustment

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-0 1	1st position loop gain	Operati on setting	Effective immedi- ately	400	0 to 6200	Gain control	0.1Hz

Set the proportional gain of the 1st position loop to determine the responsiveness of position control system.

P0 2-	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
02	1st speed loop gain	Operation setting	Effective immediately	65	0 to 35000	Gain control	0.1Hz

Set the proportional gain of the 1st speed loop to determine the responsiveness of speed loop.

P 02 -0 3	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
	1st speed loop inte- gral time constant	Operati on setting	Effective immedi- ately	1000	100 to 65535	Gain control	0.1ms

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-0 4	2nd posi- tion loop gain	Operati on setting	Effective immedi- ately	35	0 to 6200	Gain control	0.1Hz

Set the proportional gain of the 2nd position loop to determine the responsiveness of position control system.

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-0 5	2nd speed loop gain	Operati on setting	Effective immedi- ately	65	0 to 35000	Gain control	0.1Hz

Set the proportional gain of the 2nd speed loop to determine the responsiveness of speed loop.

P	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
02 -0 6	2nd speed loop inte- gral time constant	Operati on setting	Effective immedi- ately	1000	100 to 65535	Gain control	0.1ms

Set the 2nd speed loop integral constant. The smaller the set value, the stronger the integral effect.

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-0 7	2nd gain switching mode	Operati on setting	Effective immedi- ately	0	0 to 3	Gain control	-

Used to set the 2nd gain switching mode.

Setting value	Definition
0	Switch by DI terminal
1	Speed instruction change rate is too large
2	Large position deviation

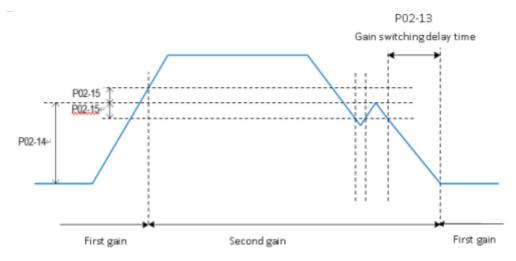
3	None

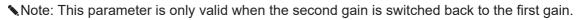
P 02 -0 8	Parameter name Gain switchi ng condition selection	Setting metho d Operati on	Effective time Effective immedi-	Default 0	Range 0 to 10	Category Gain control	U ni t
Set	the conditions f	setting for gain sw	ately /itching.				
Se ing va ue	Gain swite g ing Il conditior				Deta	ails	
0	The defaul the first ga		d use of the f	irst gain			
1	Use DI function 10 (GAIN-SEL, gain switching); Switch by DI port DI logic is invalid: the first gain (P02-01~P02-03); DI logic is valid: the second gain (P02-04~P02-06).					02-03);	
2	Large torq comman	than ue In th d than	In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.				
3	Large actu torque	Large actual torque In the previous first gain, when the absolute value of actual torque is greater that torque In the previous second gain, when the absolute value of actual torque is less that the value of (grade - hysteresis) and the duration is greater than [P02-13], the fir gain is returned.					n
4	Large spe comman	than ed In th d than	(grade + hys e previous se	teresis), th cond gain, (grade - hy	e second gain when the abs	e value of speed command is greater is switched; olute value of speed command is less he duration is greater than [P02-13], th	

5	Large actual speed	In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
6	Large rate of change in speed command	In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
7	Large posi- tion deviation	In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; In the previous second gain, switch to the first gain when the absolute value of posi- tion deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
8	Position command	In the previous first gain, if the position command is not 0, switch to the second gain; In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
9	Positioning complete	In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
10	Position command + actual speed	In the previous first gain, if the position command is not 0, the second gain is switched; In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than (grade - hysteresis).

P 0	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit		
2- 0 9	Speed feedfor- ward gain	Operati on setting	Effective immedi- ately	0	0 to 1000	Gain control	0.1%		
Set	Set speed feedforward gain								

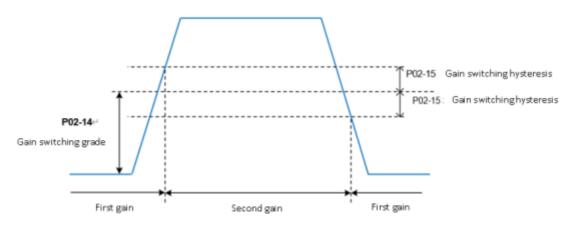
Р	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit		
0 2- 1 0	Speed feedfor- ward filter- ing time constant	Operati on setting	Effective immedi- ately	50	0 to 10000	Gain control	0.1ms		
Set	Set the time constant of one delay filter related to the speed feedforward input.								

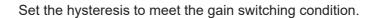

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-1 1	Torque feedforward gain	Operati on setting	Effective immedi- ately	0	0 to 2000	Gain control	0.1%

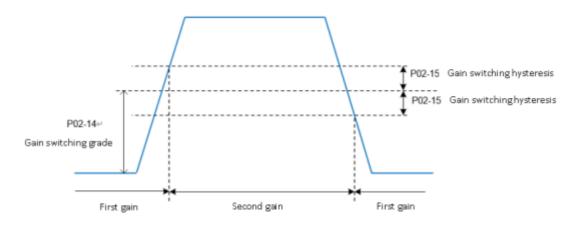

Set torque feedforward gain

Р	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
0 2- 1 2	Torque feedfor- ward filter time constant	Operati on setting	Effective immedi- ately	50	0 to 10000	Gain control	0.1ms
Set		ant of one	delay filter re	lated to the	e torque fe	edforward input.	

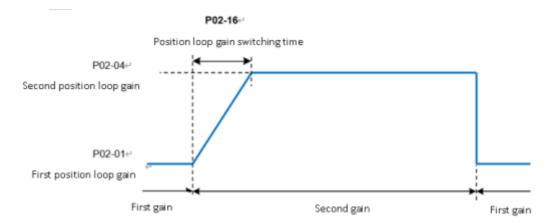
P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-1 3	Delay Time for Gain Switching	Operati on setting	Effective immedi- ately	20	0 to 10 000	Gain control	0.1ms


The duration of the switching condition required for the second gain to switch back to the first gain.




P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-1 4	Gain switching grade	Operati on setting	Effective immedi- ately	50	0 to 20000	Gain control	According to the switching conditions

Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.


P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-1 5	Gain switching hysteresis	Operati on setting	Effective immedi- ately	20	0 to 20000	Gain control	According to the switching conditions

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-1 6	Position loop gain switching time	Operati on setting	Effective immedi- ately	30	0 to 10 000	Gain control	0.1ms

Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.

If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.

Р	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
02 -2 0	Enable model tracking control function	Shutdo wn setting	Effective immedi- ately	0	0 to 1	Gain control	

Set 1 to enable the model tracking control function.

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
-2 1	Model tracking control gain	Shutdo wn setting	Effective immedi- ately	1000	200 to 20000	Gain control	0.1/s

Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior.

Р	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
02 -2 2	Model tracking control gain compensa- tion	Shutdo wn setting	Effective immedi- ately	1000	500 to 2000	Gain control	0.10%

The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.

P 02	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
02 -2 3	Model tracking control for- ward rota- tion bias	Operati on setting	Effective immedi- ately	1000	0 to 10 000	Gain control	0.10%

Torque feedforward size in the positive direction under model tracking control.

Р	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit	
02 -2 4	Model tracking control re- verses rota- tion bias	Operati on setting	Effective immedi- ately	1000	0 to 10 000	Gain control	0.10%	

Torque feedforward size in the reverse direction under model tracking control.

	ameter ame	Setting metho d	Effective time	Default	Range	Category	Unit
tra co spee for com	odel cking ontrol d feed- ward pensa- ion	Operati on setting	Effective immedi- ately	1000	0 to 10 000	Gain control	0.10%

The size of the speed feedforward under model tracking control.

Group P03 Self-adjusting parameters

P03-	Parameter name	Setting method	Effective time	Default	Range	Category	Uni t
01	Load inertia ratio	Operation setting	Effective immediately	300*	100 to 10000	Automatic pa- rameter tuning	0.0 1
	d inertia ratio: 0.00 to [.] cates that the factory d		nt models may diffe	r.	8		

D Settin ef **Parameter** Effecti Ra Cate g Unit а name metho ve time nge gory ul Ρ d t 0 3-Auto 0 Effectiv matic Operati 2 Load rigidе 1 0 to paon ity grade 4* imme-31 ramesetting selection diately ter tuning

Set the rigidity of servo system. The higher the value, the faster the response, but too high rigidity will cause vibration. "*" indicates that the factory defaults for different models may differ.

Ρ	Paramet er name	Setting metho d	Effecti ve time	Def aul t	Ra ng e	Categ ory	Unit
0 3- 0 3	Self-ad- justing mode selection	Operati on setting	Effectiv e imme- diately	0	0 to 2	Autom atic pa- rame- ter tuning	_

Different gain adjustment modes could be set, and the relevant gain parameters could be set manually or automatically set according to the rigidity level table.

tin Instru g ction val source ue
--

0	Self- adjust- ing mode.	Position loop gain, speed loop gain, speed loop integral time constant, torque filter param- eter settings are automatically adjusted according to the rigidity grade setting.
1	Manual setting	You need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter
2	Online auto- matic self- adjust- ing mode	Not implemented yet

P 0	Parameter name	Settin g meth od	Effectiv e time	D e f a u It	Ra ng e	Cate gory	Unit
3- 0 4	Online inertia recognition sensitivity	Opera tion set- ting	Effective immedi- ately	0	0 to 2	Auto mati c pa- ram- eter tun- ing	_

Р	Parameter name	Settin g meth od	Effectiv e time	De fa ult	Ra ng e	Cate gory	Unit
0 3 - 0 5	Number of circles Inertia recognition	Shutd own set- ting	Effective immedi- ately	2	1 to 20	Auto matic pa- ram- eter tun- ing	Circle

Offline load inertia recognition processe motor rotation number setting

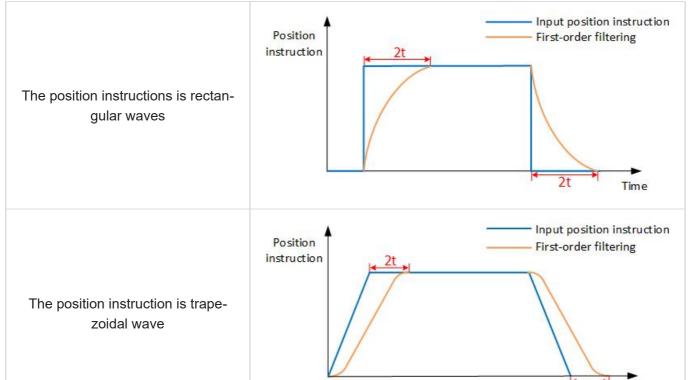
P 0 3	Parameter name	Setti ng meth od	Effecti ve time	D ef au It	Ra ng e	Categ ory	Unit
- 0 6	Inertia recognition maximum speed	Shutd own set- ting	Effectiv e immedi- ately	10 00	300 to 200 0	Autom atic param- eter tuning	rpm

Set the allowable maximum motor speed instruction in offline inertia recognition mode. The faster the speed during inertia recognition, the more accurate the recognition result will be. You are advised to keep the default value.

Ρ	Parameter Setting name method		Effective time	Defaul t	Rang e	Category	Uni t
0 3- 0 7	Parameter recognition rotation direction	Shutdo wn setting	Effective immediately	0	0 to 2	Automatic parameter tuning	-

Set parameter recognition rotation direction

Setting value	Rotation direction
0	Forward and reverse reciprocating rotation
1	Forward one-way rotation
2	Reverse one-way rotation


P03-	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Un it
08	Parameter recognition wait- ing time	Shutdown setting	Effective immediately	1000	300 to 10000	Self- tuning	ms
During	offline inertia recognition, the t	ime interval betw	veen two consecutiv	ve speed	instructions		-

Group P04 Vibration suppression

Р	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit			
04 -0 1	Pulse in- struction fil- tering method	Shutdo wn setting	Effective immedi- ately	0	0 to 1	Position mode	-			
	Setting value				Filtering method					
	0			First-order low-pass filter						
	1				Average filtering					

Ρ	Parameter name	Settin g meth od	Effective time	Defa ult	Rang e	Category	Unit
04 -0 2	Position in- struction first-order low-pass fil- tering time constant	Shutd own setting	Effective immedi- ately	0	0 to 1000	Position mode	ms

Used to set position instructions first-order low-pass filtering time constant.

Р	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
04 -0 3	Position in- struction average fil- tering time constant	Shutdo wn setting	Effective immedi- ately	0	0 to 128	Position mode	ms

Used to set average filtering time constant.

	Position instruction	Input position instruction Average filtering
The position instructions is rectan- gular waves	t t	t Time
The position instruction is trape- zoidal wave	Position instruction	Input position instruction Average filtering

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit		
-0 4	Torque fil- tering time constant	Operati on setting	Effective immedi- ately	50	10 to 2500	Vibration suppression	0.01ms		
Used to set torque filtering time constant. When the function code P03-03(Self-adjustment mode selection) is set to 0, the parameter is automatically set by servo. Please refer to <u>6.4.2 Torque instruction filtering</u>									

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 5	1st notch filter frequency	Operati on setting	Effective immedi- ately	300	250 to 5000	Vibration suppression	Hz

Set the center frequency of the 1st notch filter.

When the function code is set to 5000, the function of the notch filter is invalid.

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 6	1st notch filter depth	Operati on setting	Effective immedi- ately	100	0 to100	Vibration suppression	-

Set the notch filter depth grade (the ratio between input and output at the center frequency of the notch filter)

The larger the set value of this function code is, the smaller the notch filter depth is, and the weaker the suppression effect of mechanical vibration is. However, setting too large could cause system instability. Please refer to <u>7.4.2 Notch filter</u>

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 7	1st notch filter width	Operati on setting	Effective immedi- ately	4	0 to 12	Vibration suppression	-

Set the notch filter width grade (the ratio between input and output at the center frequency of the notch filter)

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 8	2nd notch filter frequency	Operati on setting	Effective immedi- ately	500	250 to 5000	Vibration suppression	Hz

Set the center frequency of the 1st notch filter.

When the function code is set to 5000, the function of the notch filter is invalid.

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 9	2nd notch filter depth	Operati on setting	Effective immedi- ately	100	0 to 100	Vibration suppression	-

P 04	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-1 0	2nd notch filter width	Operati on setting	Effective immedi- ately	4	0 to 12	Vibration suppression	-

Р	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
04 -1 1	Enable low- frequency vibration suppression function	Operati on setting	Effective immedi- ately	4	0 to 1	Vibration suppression	

When the function code is set to 1, enable the low-frequency vibration suppression function.

Р	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
04 -1 2	Low-fre- quency vi- bration sup- pression frequency	Operati on setting	Effective immedi- ately	800	10 to 2000	Vibration suppression	0.1HZ

Set the center frequency of the 1st notch filter.

When the function code is set to 5000, the function of the notch filter is invalid.

P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-1 4	Shutdown vibration detection amplitude	Operati on setting	Effective immedi- ately	100	0 to 3000	Vibration suppression	0.001

When the vibration amplitude is greater than detection amplitude ratio, the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity. The function code is set too large or too small to affect the recognition of the vibration frequency.

P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-1 8	Speed feedback fil- tering time	Operati on setting	Effective immedi- ately	40	20 to 1000	Vibration suppression	0.01ms

Wave filtering of the feedback speed of the encoder. When the filtering time is set large, it may cause the motor to vibrate.

P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-1 9	Enable the type A sup- pression function	Operati on setting	Effective immedi- ately	0	0 to 1	Vibration suppression	

When the function code is set to 1, enable the type A suppression function.

P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-2 0	Type A sup- pression frequency	Operati on setting	Effective immedi- ately	1000	100 to 20000	Vibration suppression	0.1HZ

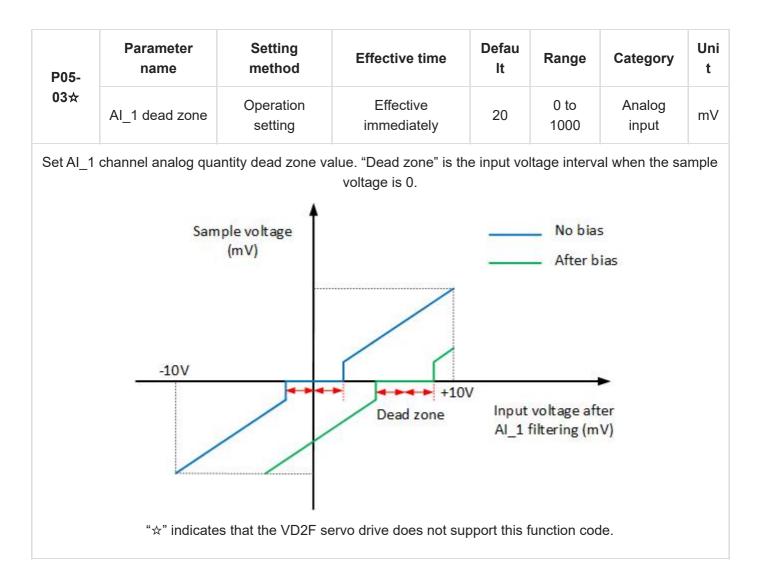
Set the frequency of Type A suppression.

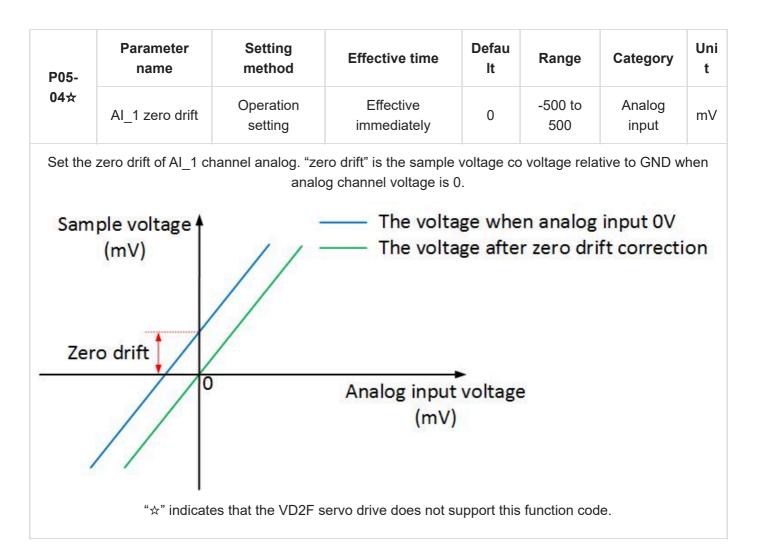
P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-2 1	Type A sup- pression gain correction	Operati on setting	Effective immedi- ately	100	0 to 1000	Vibration suppression	0.01

Correct the load inertia ratio size.

P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-2 2	Type A sup- pression damping gain	Operati on setting	Effective immedi- ately	0	0 to 500	Vibration suppression	0.01

The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.


P 04	Parameter name	Setting metho d	Effective time	Defau It	Rang e	Category	Unit
-2 3	Type A sup- pression phase correction	Operati on setting	Effective immedi- ately	200	0 to 900	Vibration suppression	0.1 degree


Type A suppression phase compensation.

Group P05 Signal input and output

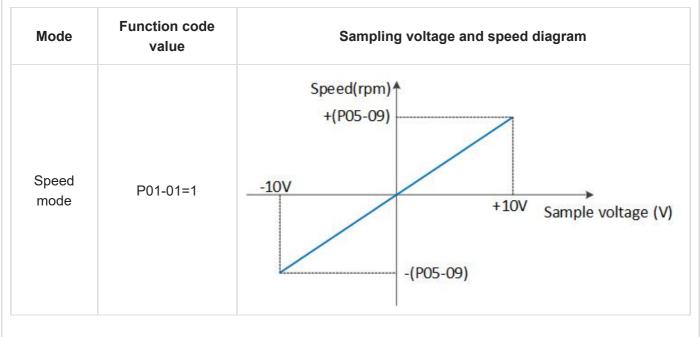
P05-	Parameter name	Setting method	Effective time	Defau It	Range	Category	Un it
01☆	AI_1 input bias	Operation setting	Effective immediately	0	-5000 to 5000	Analog input	mV
		Set Al_1	l channel analog bias	value			
	10V	Sample voltage (mV)	+10 Bias	Input	 No bias After bias voltage after filtering (mV) 		
	"☆" indicat	tes that the VD2F	servo drive does not s	support th	is function code	Э.	

P05-	Parameter name	Setting method	Effective time	Defa ult	Range	Categor y	Unit	
02 ☆	AI_1 input filter time constant	Operation setting	Effective immediately	200	0 to 60000	Analog input	0.01 ms	
Set AI_1 channel input first-order low-pass filter time constant							-	
"☆" indicates that the VD2F servo drive does not support this function code.								

P05-	Parameter name	Setting method Effective time		Defau It	Range	Category	Un it	
05☆	AI_2 input bias	Operation setting	Effective immediately	0	-5000 to 5000	Analog input	mV	
"☆" indicates that the VD2F servo drive does not support this function code.								

	Parameter name	Setting method	Effective time	Effective time Defaul t		Category	Unit
P05-06☆	AI_2 input filter time constant	Operatio n setting	Effective immediately	200	0 to 60000	Analog input	0.01ms
"☆" indicat	es that the VD2	2F servo driv	ve does not support this t	function co	de.		

P05-	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
07☆	AI_2 dead zone	Operation setting	Effective immediately	20	0 to 500	Analog input	mV
"≁" indice	atos that the VD2E of	anvo drivo doos no	t support this function	codo			


"☆" indicates that the VD2F servo drive does not support this function code.

P05-	name	Setting method	Effective time	Defau It	Range	Category	Uni t
08☆ Al_	_2 zero drift	Operation setting	Effective immediately	0	-500 to 500	Analog input	mV

" \ref{main} indicates that the VD2F servo drive does not support this function code.

P05- 09☆	Parameter name	Setting method	Effective time	Defa ult	Range	Categor y	U ni t
09×	Analog 10V corresponds to the speed value	Shutdown setting	Effective immediately	300 0	1000 to 4500	Analog input	rp m

Set the speed value corresponding to the analog 10V

Given speed = sampling voltage / 10 * (P05-09)

"☆" indicates that the VD2F servo drive does not support this function code.

P05-	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categor y	Un it
10 ☆	Analog 10V corresponds to the torque value	Shutdown setting	Effective immediately	1000	0 to 3000	Analog input	0.1 %

Set the torque value corresponding to the analog 10V

Mode	Function code value	Sampling voltage and speed diagram
Torque mode	P01-07=1	-10V -10V

Given torque= sampling voltage / 10 * (P05-10)

"☆" indicates that the VD2F servo drive does not support this function code.

P05 -11	Parameter name	Setting method	Effective time	Def ault	Ra nge	Categor y	U ni t
-11	Positioning completion, positioning ap- proach condition setting	Operation setting	Effective immediately	0	0 to 3	Position mode	-

Set the conditions of setting positioning completion and positioning approach. When servo is in position mode, and the absolute value of the positional deviation is within the range of P05-12 (positioning complete threshold) or P05-13 (positioning approach threshold), servo would output the positioning complete signal and positioning approach signal.

Set valu e	Output condition
0	It is valid when the absolute value of the position deviation is smaller than or close to the threshold
1	It is valid when the absolute value of the position deviation is smaller than or close to the threshold and input position instruction is 0

3 It is valid when the absolute value of the position deviation is smaller than or close to the thresh- old, input position instruction filtering value is 0, and continuous positioning detects window time	2	It is valid when the absolute value of the position deviation is smaller than or close to the threshold and input position instruction filtering value is 0
	3	

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P05	Parameter name	Setting method	Effective time	Def ault	Range	Categor y	Unit
-12	Positioning completion threshold	Operation setting	Effective immediately	800	1 to 65535	Position mode	Equivalent pulse unit

Set the threshold of absolute value of position deviation when servo drive output positioning completion signal

P05	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Unit
-13	Positioning approach threshold	Operation setting	Effective immediately	500 0	1 to 65535	Position mode	Equivalent pulse unit

Set the threshold of absolute value of position deviation when servo drive output positioning approach signal

P 0	Parameter name	Setting metho d	Effective time	Def ault	Range	Category	Unit
5 - 1 4	Position detection window time	Operati on setting	Effective immedi- ately	10	0 to 20000	Position mode	ms

Set the detection window time for positioning completion

P05-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Un it
15	Positioning signal hold- ing time	Operation setting	Effective immediately	100	0 to 20000	Position mode	ms

Set the time for the signal to remain in effect after positioning when P05-11=3 (Positioning completion and positioning approach condition setting)

P05-	Parameter name	Setting method	Effective time	Defa ult	Range	Category	Un it
16	Rotation detection speed threshold	Operation setting	Effective immediately	20	0 to 1000	Speed mode	rp m

Set the speed threshold that triggers the motor rotation signal. The motor rotation signal (TGON) is used to confirm that the motor has rotated. Please refer to 6.3.5 Speed-related DO output function

P05- 17	Parameter name	Setting method	Effective time	Defa ult	Rang e	Category	Un it
	Speed consistent signal threshold	Operation setting	Effective immediately	10	0 to 100	Speed mode	rp m

Set the speed threshold that triggers the motor speed consistent signal. The motor outputs speed consistent signal (V-COIN) indicates that the actual speed has reached the speed instruction setting value. Please refer to <u>6.3.5 Speed-related DO output function</u>

P 0	Parameter name	Setting method	Effective time	Defaul t	Range	Category	Uni t
5- 1 8	Speed ap- proach signal threshold	Operation setting	Effective immediately	100	10 to 6000	Speed mode	rpm

Set the speed threshold that triggers the motor speed approach signal. The motor outputs speed approach signal (V-NEAR) indicates that the actual speed has reached the expected value. Please refer to <u>6.3.5</u> <u>Speed-related DO output function</u>

P05- 19	Parameter name 5-	Setting method	Effective time	Defa ult	Range	Category	Un it
	Zero speed output signal threshold	Operation setting	Effective immediately	10	0 to 6000	Speed mode	rp m

Set the speed threshold that triggers the motor zero speed output signal. The motor outputs zero speed signal (ZSP) indicates that the actual speed is almost stationary. Please refer to <u>6.3.5 Speed-related DO output</u> <u>function</u>

P05-	Parameter name	Setting method	Effective time	Defau It	Range	Category	Uni t
20	Torque arrival threshold	Operation setting	Effective immediately	100	0 to 300	Torque mode	%

Please refer to 6.4.5 Torque-related DO output functions

P05- 21	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Category	Un it			
	Torque arrival hysteresis value	Operation setting	Effective immediately	10	0 to 20	Torque mode	%			
Please	Please refer to 6.4.5 Torque-related DO output functions									

Group P06 DI/DO configuration

P06- 02	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
	DI_1 channel function selection	Operation setting	Power on again	01	0 to 32	DI/DO	-

Set DI functions corresponding to hardware DI_1. The related functions are as below.

Set value	DI channel function	Set val ue	DI channel function
0	Off (not used)	13	INSPD1 (Internal speed instruction selection 1)
1	S-ON (Servo enable)	14	INSPD2 (Internal speed instruction selection 2)
2	A-CLR (Fault and warning clear)	15	INSPD3 (Internal speed instruction selection 3)
3	POT (Forward drive prohibition)	16	J-SEL Inertia ratio switch (not implemented yet)
4	NOT (Reverse drive prohibition)	17	MixModeSel Mix mode selection
5	ZCLAMP (Zero- speed clamp)	18	None
6	CL (Clear devia- tion counter)	19	None
7	C-SIGN (instruc- tion is reversed)	20	ENINPOS (Internal multi- segment enable signal)
8	E-STOP (Emergency stop)	21	INPOS1 (Internal multi- segment position selec- tion 1)

9	GEAR-SEL (Electronic Gear Switch 1)	22	INPOS2 (Internal multi- segment position selec- tion 2)
10	GAIN-SEL (Gain switch)	23	INPOS3 (Internal multi- segment position selec- tion 3)
11	INH (Instruction pulse prohibited input)	24	INPOS4 (Internal multi- segment position selec- tion 4)
12	VSSEL (Vibration con- trol switching input)	-	-

If P06-02 is set to a value other than that in the table above, the DI port function is not required.

The same DI channel function could not be allocated to multiple DI ports, otherwise servo drive will occur A-89 (DI port configuration duplication)

P06- 03	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Uni t
	DI_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

DI port input logic validity function selection

set value	Content	t Illustration			
0	Normally open input. Active low level (switch on)	High level —————————————————————————————————	More than 3ms Valid		
1	Normally closed input. Active high level (switch off)	High level	Valid More than 3ms		
		Low level	→		

P06- 04	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t	
	DI_1 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	
Select th	he enabled DI_1 port ty	De						
Set value		Content						
	0	Hardware DI_1 input terminal						
	1	Virtual VDI_1 input terminal						

P 0	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
6- 0 5	DI_2 channel function selection	Operatio n setting	Power on again	2	0 to 32	DI/DO	-

P06- 06	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Uni t
	DI_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

P0	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
6- 07	DI_2 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	

P 06	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
-0 8	DI_3 chan- nel function selection	Operatio n setting	Power on again	3	0 to 32	DI/DO	-

P 06	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
-0 9	DI_3 chan- nel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

Р	0	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
6 1		DI_3 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	

P0 6-	Parameter name	Setting method	Effective time	D ef au It	Range	Category	Unit
11	DI_4 chan- nel function selection	Operatio n setting	Power on again	4	0 to 32	DI/DO	-

P0	Parameter name	Setting method	Effective time	Default	Range	Category	Unit	
6- 12	DI_4 chan- nel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	

P0	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
6- 13	DI_4 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

P0 6- 14	Parameter name	Setting method	Effective time	D ef au It	Range	Category	Unit
☆	DI_5 chan- nel function selection	Operatio n setting	Power on again	7	0 to 32	DI/DO	-

"☆" indicates that the VD2F servo drive does not support this function code.

P0 6-	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
o- 15 ☆	DI_5 chan- nel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P06-	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Un it	
16 ☆	DI_5 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P0 6- 17	Parameter name	Setting method	Effective time	D ef au It	Range	Category	Unit
*	DI_6 chan- nel function selection	Operatio n setting	Power on again	11	0 to 32	DI/DO	-

" \Rightarrow " indicates that the VD2F servo drive does not support this function code.

P06-	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Un it
18☆	DI_6 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

" \Rightarrow " indicates that the VD2F servo drive does not support this function code.

P06-	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Un it
19 ☆	DI_6 input source selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

" \Rightarrow " indicates that the VD2F servo drive does not support this function code.

P0 6-	Parameter name	Setting method	Effective time	De fa ult	Range	Category	Unit
20 ☆	DI_7 channel function selection	Operati on setting	Power on again	2	0 to 32	DI/DO	-

"☆" indicates that the VD2F servo drive does not support this function code.

P0 6- 21	Parameter name	Setting method	Effective time	D ef au It	Range	Category	Unit
☆	DI_7 channel logic selection	Operatio n setting	Power on again	0	0 to 1	DI/DO	-

" \Rightarrow " indicates that the VD2F servo drive does not support this function code.

P0 6-	Paramete r name	Setting method	Effective time	De fau It	Range	Category	Unit
22 ☆	DI_7 input source selection	Operation setting	Effective immedi- ately	0	0 to 1	DI/DO	-

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P0 6-	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
6- 23 ☆	DI_8 chan- nel function selection	Operatio n setting	Power on again	2	0 to 32	DI/DO	-

" \ddagger " indicates that the VD2F servo drive does not support this function code.

P0 6- 24	Parameter name	Setting method	Effective time	D ef a ul t	Range	Category	Unit
*	DI_8 chan- nel logic selection	Operati on setting	Power on again	0	0 to 1	DI/DO	-

"☆" indicates that the VD2F servo drive does not support this function code.

P0 6-	Parameter name	Setti ng meth od	Effective time	Def aul t	Range	Category	Unit
25 ☆	DI_8 input source selection	Oper ation set- ting	Effective immedi- ately	0	0 to 1	DI/DO	-

"☆" indicates that the VD2F servo drive does not support this function code.

DO	Parameter name	Setting method	Effectiv e time	Default	Range	Category	Unit	
P0 6- 26	DO_1 channel function selection	Operatio n setting	Effective immedi- ately	132	128 to 142	DI/DO	-	

Set DO functions corresponding to hardware DO_1. The related functions are as below.

Set value	DO channel function	Set value	DO channel function
128	Close (not used)	139	T-LIMIT (Torque limit)
129	RDY (Servo ready)	140	V-LIMIT (speed limited)
130	ALM (fault signal)	141	BRK-OFF (brake output) 1
131	WARN (warning signal)	142	SRV-ST (Servo on state output)
132	TGON (rotation detection)	143	OZ (Z pulse output) 1
133	ZSP (zero speed signal)	144	None
134	P-COIN (positioning completed)	145	COM_VDO1 (communication VDO1 output)

135	P-NEAR (positioning approach)	146	COM_VDO1 (communication VDO2 output)
136	V-COIN (consistent speed)	147	COM_VDO1 (communication VDO3 output)
137	V-NEAR (speed approach)	148	COM_VDO1 (communication VDO4 output)
138	T-COIN (torque arrival)	-	

If P06-26 is set to a value other than that in the preceding table, the DO port function is not required

The same DO channel function could not be allocated to multiple DO ports, otherwise servo drive will occur A-90 (DO port configuration duplication)

" 1" means use the function code BRK-OFF would be effective after power on again.

"•2"Only under the VD2-0xxSA1H model, the DO_2, DO_3, DO_4 function code is 143 OZ (Z pulse output), these 3 channels correspond to the Z, A and B phase of the pulse output. And only VD2F models support 143: OZ (Z pulse output). The function code of VD2-0xxSA1G models is empty!

Note: Only under VD2-0xxSA1H model, the default function code of the DO_1 channel function selection is 130ALM (fault signal)!

P06-	Parameter name	er name Setting Effective time				Catego ry	Un it				
27	DO_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	DI/DO	-				
DO Port input logic validity function selection.											
Set value	Set Content value										
0	Output transistor is on when the output is valid, and output transistor is off when the output is invalid.										
1 Output transistor is off when the output is valid, and output transistor is on when the output is invalid.							is				

P06-	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Un it
28	DO_2 channel function selection			130	128 to 142	DI/DO	-

P 0	Parameter name	Setting metho d	Effective time	De fa ult	Ra nge	Ca teg ory	Unit
6- 2 9	DO_2 channel logic selection	Operati on setting	Effective immedi- ately	0	0 to 1	DI/ DO	-

P06-	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Un it
30	DO_3 channel function selection	Operation setting	Effective immediately	129	128 to 142	DI/DO	-

P 0 6-	Parameter name	Setting method	Effective time	De fa ult	Ra nge	Ca teg or y	Unit
3 1	DO_3 channel logic selection	Operati on setting	Effective immedi- ately	0	0 to 1	DI/ DO	_

P06-	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Un it
32	DO_4 channel function selection	Operation setting	Effective immediately	134	128 to 142	DI/DO	-

P 0 6-	Parameter name	Setting method	Effective time	D ef au It	Ra nge	Cat eg ory	Unit
3 3	DO_4 channel logic selection	Operati on setting	Effective immedi- ately	0	0 to 1	DI/ DO	_

Group P07 multi-segment position

P07-	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Categ ory	Un it	
01	Multi-segment position opera- tion mode	Shutdown setting	Effective immediately	0	0 to 2	-	-	

When servo is in position mode, and P01-06 (position instruction source) =1, set the operation mode of multisegment position

Set value	Operation mode	Remarks
0	Single running	Stop after running one round. The segment number automatic increment switching.
1	Cycle running	Cycle running. The segment number automatic increment switching.
2	DI switching running	Segment number updates can continue to run. The segment numbers are deter- mined by the DI terminal logic

To use multi-segment position function, a DI port channel of servo drive should configured to function 20 (ENINPOS, internal multi-segment position enable signal), and the logic of the DI terminal valid should be confirmed. Please refer to <u>Group P06 DI/DO configuration</u>

P07-	Parameter name	Setting method	Effective time	Defaul t	Rang e	Categor y	Uni t
02	Starting position number	Shutdown setting	Effective immediately	1	1 to 16	-	-

Set the starting segment number in single running or cycle running.

When P07-01≠2, the segment number automatic increment switching.

When P07-01=2, 4 DI ports need be set to DI function 21 (INPOS1, internal multi-segment position segment selection 1 to INPOS4, internal multi-segment position segment selection 4), and the segment number is switched by the servo host computer to control the DI terminal logic. Multi-segment number is 4-bit binary number. The corresponding relations between internal multi-segment position segment selection and segment number are as below.

If DI terminal logic is valid, the value of internal multi-segment position segment selection is 1, otherwise it is 0.

INPOS4	INPOS3	INPOS2	INPOS1	Operation segment number
0	0	0	0	1
0	0	0	1	2

0	0	1	0	3			
1	1	1	1	16			

P07- 03	Parameter name	Setting method	Effective time	Defaul t	Rang e	Categor y	Uni t
	End position number	Shutdown setting	Effective immediately	1	1 to 16	-	-

Set the end segment number in single running or cycle running.

When P07-01≠2, the segment number automatic increment switching. The switching sequence is: P07-02,, P07-03.

P07-	Parameter name	Setting method	Effective time	Defaul t	Rang e	Categor y	Uni t
04	Margin handling method	Shutdown setting	Effective immediately	0	0 to 1	-	-

The starting segment number used for the servo drive will run when it resumes after pausing in multisegment.

"Pause" indicates that internal multi-segment position enable signal changes from valid to invalid.

Set value	Margin handling method	Remarks
0	Run the remaining positions	If P07-03 (end segment number) =16, servo would stop running in the 2nd segment. After restoring the "Internal Multi-Segment Enable Signal", servo would run from the 3rd segment.
1	Run again from the starting position	If P07-02 (start segment number) =1, and P07-03 (end segment num- ber) =16, servo would stop running in the 2nd segment. After restoring the "Internal Multi-Segment Enable Signal", servo would run from the set value of P07-02

Once paused during multi-segment position operation, the servo drive will abandon the unfinished position instructions in this segment and shutdown. Please refer to <u>Margin handling method</u>

P07-	Parameter name	Setting method	Effective time	Defau It	Rang e	Catego ry	Un it
05	Displacement instruction type	Shutdown setting	Effective immediately	0	0 to 1	-	-

Set the displacement instruction type of multi-segment position function. "Displacement instruction" is the sum of the displacement instructions over a period of time.

Set value	Instruction type	Remarks
0	Relative position instruction	Relative displacement is the increment of the position of the target relative to the current position of motor.
1	Absolute position instruction	Absolute displacement is the increment of the position of the target relative to the origin of motor

P07-	Parameter name	Setting method	Effective time	Defaul t	Rang e	Categor y	Uni t
06	Waiting time unit	Shutdown setting	Effective immediately	0	0 to 1	-	-

Set the waiting unit of multi-segment position function. "waiting time" is the interval between the end of this instruction and the start of the next instruction.

Waiting time unit
ms
S

P07-	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	U ni t			
09 -	The 1st segment displacement	Operation setting	Effective immediately	1000 0	-2147483647 to 2147483646	-	-			
Set the 1st segment position displacement										

	Parameter name	Setting method	Effective time	Default	Range	Category	Unit
P07-10	Maximum speed of the 1st seg- ment displacement	Operatio n setting	Effective immedi- ately	100	1 to 5000	-	rpm

Set the maximum speed of the 1st position displacement. Maximum running speed refers to the speed the motor that is not in the process of acceleration and deceleration. If P07-09 (1st position displacement) is set too small, the actual speed of motor would be less than P07-10.

P0 7-	Parameter name	Setting method	Effective time	Def ault	Rang e	Cate gory	U ni t
11	Acceleration and deceleration time of the 1st segment displacement	Operation setting	Effective immediately	100	1 to 6553 5	-	m s

Used to set the time when the motor in the multi-segment position is uniformly accelerated from 0rpm to the P07-10 (maximum speed of the 1st segment displacement) in the multi-segment position.

P0	Parameter name	Setting method	Effective time	Def ault	Rang e	Cate gory	Unit
7- 12	Waiting time after completion of the 1st segment displacement	Operation setting	Effective immediately	100	1 to 6553 5	-	Set by P07-06

Used to set the waiting time before running the next segment displacement after the multi-segment position of the 1st displacement is completed

P07	Parameter name	neter name Setting Effective time		Defa ult	Range		U ni t
-13	The 2nd segment displacement	Operation setting	Effective immediately	1000 0	-2147483647 to 2147483646	-	-

09 Parameters

P07 14	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t	
14	Maximum speed of the 2nd segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m	

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it
7 - 1 5	Acceleration and decelera- tion time of the 2nd seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	Unit
- 1 6	Waiting time after com- pletion of the 2nd seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07-	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	U ni t
17	The 3rd segment displacement	Operation setting	Effective immediately	100 00	-2147483647 to 2147483646	-	-

P07- 18	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t
10	Maximum speed of the 3rd segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m

P 0 7	Parameter name	Setti ng met hod	Effective time	Default	Range	Category	Unit
- 1 9	Acceleration and decel- eration time of the 3rd segment displacement	Oper ation set- ting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Sett ing met hod	Effective time	Defaul t	Range	Categor y	Unit
7 - 2 0	Waiting time after completion of the 3rd segment displacement	Ope ra- tion set- ting	Effective immediately	100	1 to 65535	-	Set by P07- 06

P07-	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	U ni t	
21	The 4th segment displacement	Operation setting	Effective immediately	1000 0	-2147483647 to 2147483646	-	-	

P07- 22	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t	
22	Maximum speed of the 4th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m	

P 0 7	Parameter name	Setti ng met hod	Effective time	Default	Range	Category	Unit
- 2 3	Acceleration and decel- eration time of the 4th segment displacement	Oper ation set- ting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Set tin g met ho d	Effective time	Defaul t	Range	Categor y	Unit
- 2 4	Waiting time after com- pletion of the 4th seg- ment displacement	Op era- tion set- ting	Effective immediately	100	1 to 65535	-	Set by P07- 06

P 0 7	Paramete r name	Setti ng meth od	Effective time	Defaul t	Range	Category	Uni t	
- 2 5	The 5th segment displace- ment	Oper ation set- ting	Effective immediately	10000	-2147483647 to 2147483646	-	-	

P07- 26	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t	
20	Maximum speed of the 5th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m	

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it
- 2 7	Acceleration and deceler- ation time of the 5th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 2 8	Waiting time after com- pletion of the 5th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0 7	Parameter name	Setting metho d	Effecti ve time	D ef au It	Range	Category	Unit
- 2 9	The 6th segment displace- ment	Operati on setting	Effectiv e imme- diately	10 00 0	-214748364 7 to 214748364 6	-	-

P 0 7	Parameter name	Setting method	Effective time	Defaul t	Range	Categor y	Uni t
- 3 0	Maximum speed of the 6th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

P 0	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it
7- 3 1	Acceleration and deceler- ation time of the 6th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
7- 3 2	Waiting time after com- pletion of the 6th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0	Paramete r name	Setti ng meth od	Effective time	Default	Default Range		Unit
7- 3 3	The 7th segment displace- ment	Oper ation set- ting	Effective immedi- ately	10000	-2147483647 to 2147483646	-	-

P 0	Parameter name	Setting method	Effective time	Defaul t	Range	Categor y	Uni t
7- 3 4	Maximum speed of the 7th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

P 0	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it	
7- 3 5	Acceleration and deceler- ation time of the 7th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms	

P 0	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
7- 3 6	Waiting time after com- pletion of the 7th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

Р	Param eter name	Setting method	Effectiv e time	Def aul t	Range	Category	Unit
0 7 - 3 7	The 8th seg- ment dis- place- ment	Operati on setting	Effective immedi- ately	100 00	-2147483 647 to 2147483 646	-	-

P 0	Parameter name	Setting method	Effective time	Defaul t	Range	Categor y	Uni t
7- 3 8	Maximum speed of the 8th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

Р 0	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it	
7- 3 9	Acceleration and deceler- ation time of the 8th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms	

P 0	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
7- 4 0	Waiting time after completion of the 8th segment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

Ρ	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it
0 7- 4 1	The 9th segment displace- ment	Operation setting	Effective immediately	1000 0	-2147483647 to 2147483646	-	-

P 0	Parameter name	Setting method	Effective time	Defaul t	Range	Categor y	Uni t
7- 4 2	Maximum speed of the 9th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

P 0	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Un it
7- 4 3	Acceleration and deceler- ation time of the 9th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
7- 4 4	Waiting time after com- pletion of the 9th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	_	Set by P07-06

Р	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Un it
0 7- 4 5	The 10th segment displace- ment	Operation setting	Effective immediately	1000 0	-2147483647 to 2147483646	-	-

P 0	Parameter name	Setting method	Effective time	Defaul t	Range	Categor y	Uni t
7- 4 6	Maximum speed of the 10th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rpm

P 0	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t
7- 4 7	Acceleration and deceler- ation time of the 10th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
7- 4 8	Waiting time after com- pletion of the 10th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0	Paramete r name	Settin g metho d	Effecti ve time	Default	Range	Category	Unit
7- 4 9	The 11th segment displace- ment	Opera tion setting	Effectiv e imme- diately	10000	-2147483647 to 2147483646	-	-

P 0 7-	Parameter name	Setting metho d	Effective time	Default	Range	Category	Unit
5 0	Maximum speed of the 11th segment displacement	Operati on setting	Effective immediately	100	1 to 5000	-	rpm

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t
- 5 1	Acceleration and deceler- ation time of the 11th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 5 2	Waiting time after com- pletion of the 11th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	_	Set by P07-06

P07	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	U ni t
-53	The 12th segment displacement	Operation setting	Effective immediately	100 00	-2147483647 to 2147483646	-	-

P07 -54	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t
-54	Maximum speed of the 12th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t
- 5 5	Acceleration and deceler- ation time of the 12th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

09 Parameters

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 5 6	Waiting time after com- pletion of the 12th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0 7	Parameter name	Settin g meth od	Effect ive time	Default	Range	Category	Unit
- 5 7	The 13th segment displace- ment	Opera tion set- ting	Effecti ve imme- diately	10000	-2147483647 to 2147483646	-	-

P07 -58	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t
-50	Maximum speed of the 13th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t	
7 - 5 9	Acceleration and deceler- ation time of the 13th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms	

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 6 0	Waiting time after com- pletion of the 13th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P07	Parameter name	Setting method	Effective time	Defa ult	Range	Categ ory	U ni t	
-61	The 14th segment displacement	Operation setting	Effective immediately	100 00	-2147483647 to 2147483646	-	-	

P07 -62	2 Maximum speed of the 14th segment Opera		Effective time	Defa ult	Rang e	Categ ory	U ni t	
-02	Maximum speed of the 14th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m	

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t
- 6 3	Acceleration and deceler- ation time of the 14th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 6 4	Waiting time after com- pletion of the 14th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0 7	Parameter name	Setti ng meth od	Effecti ve time	Default	Range	Category	Unit
- 6 5	The 15th segment displace- ment	Oper ation set- ting	Effectiv e imme- diately	10000	-2147483647 to 2147483646	-	-

09 Parameters

P07 -66	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t
-00	Maximum speed of the 15th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t	
- 6 7	Acceleration and deceler- ation time of the 15th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms	

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 6 8	Waiting time after com- pletion of the 15th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

P 0 7	Paramete r name	Setti ng met hod	Effective time	Default	Range	Category	Uni t	
- 6 9	The 16th segment displace- ment	Oper ation set- ting	Effective immediately	10000	-2147483647 to 2147483646	-	-	

P07 -70	Parameter name	Setting method	Effective time	Defa ult	Rang e	Categ ory	U ni t
-70	Maximum speed of the 16th segment displacement	Operation setting	Effective immediately	100	1 to 5000	-	rp m

P 0 7	Parameter name	Setting method	Effective time	Defau It	Range	Catego ry	Uni t	
7 - 7 1	Acceleration and deceler- ation time of the 16th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	ms	

P 0 7	Parameter name	Setting method	Effective time	Defa ult	Range	Catego ry	Unit
- 7 2	Waiting time after com- pletion of the 16th seg- ment displacement	Operation setting	Effective immediately	100	1 to 65535	-	Set by P07-06

Group P10 Accessibility

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit	
-0 1	JOG speed	Operati on setting	Effective immedi- ately	100	0 to 3000	Accessibility	ms	
Use	Jsed to set JOG speed							

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 2	Factory reset	Shutdo wn setting	Effective immedi- ately	0	0 to 1	Accessibility	-

Write 1 to factory reset

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 3	Fault clearing	Operati on setting	Effective immedi- ately	0	0 to 1	Accessibility	-
Fau	lt reset operatio	on selectio	n				

Set value	Function	Remarks
0	No operation	-
1	Fault clearing	For clearable faults, after the cause of fault is removed, and write 1 to the function code, the drive will stop the fault display and enter the Rdy (or RUN) state again.

Note: If the servo S-ON is valid, when the fault is removed and cleared, the servo will directly enter "Run" state. When performing fault clearing actions, please be sure to stop sending control instructions such as pulses to ensure personal safety.

P 10	Parameter name	Setting method	Effective time	Defa ult	Rang e	Category	Unit
-0 4	Motor overload protection time factor	Operati on setting	Effective immedi- ately	100	0 to 800	Accessibility	%

Set the time for code A-82 (Motor overload warning) and Er.34 (Motor overload protection fault) through this function code.

According to the heating condition of the motor, modifying this value could make the overload protection time fluctuate up and down the reference value. 50 corresponds to 50%, that is, the time is reduced by half; 300 corresponds to 300%, that is, the time is extended to 3 times.

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 5	Motor model	Operati on setting	Power-on again	0	0 to 6553 5	Accessibility	-

This function code displays the motor code code of the motor currently recognized by the servo drive (including the last successful recognition).

Note: It is necessary to connect the motor first, and then power on the drive. Otherwise, it will report "Er.27" (encoder disconnection fault).

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 6	Multi-turn absolute encoder reset	Shutdo wn setting	Effective immedi- ately	0	0 to 1	Accessibility	-

Used to clear the rotation number of multi-turn absolute encoder (U0-55), current position (U0-56) or clear the encoder fault alarms

Set value	Function
0	No operation;
1	Clear multi-turn data, encoder current position and encoder fault alarms

Note: After resetting (P10-06 is set to 1), the absolute position of the encoder will change suddenly, and the mechanical origin return operation is required.

P 10	Parameter name	Setting metho d	Effective time	Defa ult	Rang e	Category	Unit
-0 7	Set ma- chine code manually	Operati on setting	Power-on again	0	0 to 1	Accessibility	-

This function code modifies the motor code code of the servo drive. When set to 0, the motor code is read from the motor side; when set to 1, the motor code is read from the P10-5 motor model.

Note: Please do not modify the motor code code arbitrarily, otherwise, the motor may be damaged.

P1 0- 08	Parameter name	Setting method	Effective time	Def ault	Range	Categ ory	U n it
	Multi-turn absolute encoder origin offset compensation	Operation setting	Effective immediately	0	2147483647 to 2147483646	Acces sibility	-

P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.

Group P12 Communication parameters

P12-	Parameter name	Setting method	Effective time	Defa ult	Rang e	Category	Un it	
01	Servo address	Operation setting	Effective immediately	1	1 to 247	Communication parameter	-	
0.1.11								

Set the Modbus communication address of servo drive

P12-	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Category	Un it
02	Baud rate	Operation setting	Effective immediately	2	0 to 6	Communication parameter	-

Set the communication rate between servo drive and Modbus software. The communication rate of the servo drive must be consistent with that of the ModBus software, otherwise, it could not communicate.

Set value	Baud rate setting	Set value	Baud rate setting
0	2400 bps	4	38400 bps
1	4800 bps	5	57600 bps
2	9600 bps	6	115200 bps
3	19200 bps		

P12-	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Category	Un it
03	Serial data format	Operation setting	Effective immediately	0	0 to 3	Communication parameter	-

Used to set the data verification mode when the servo drive communicates with ModBus. The data format of servo drive must be consistent with that of the ModBus software, otherwise it could not communicate.

Set value	Data format
0	1 stop bit, no parity
1	1 stop bit, odd parity
2	1 stop bit, even parity
3	2 stop bits, no parity

	Parameter name	Settin g metho d	Effectiv e time	D ef au It	Range	Category	Unit
P12-04	Write Modbus communication data to EEPROM	Operat ion setting	Effective immedi- ately	0	0 to 1	Communication parameter	-

Whether the function code written by the communication method is saved to EEPRO

Set value	Whether the function code written by the communication method is saved to EEPROM
0	Do not write to EEPROM, and do not save data after power failure;
1	Write to EEPROM, and save data after power failure;

Note: If you need to change the function code value frequently, it is recommended to set the function code to 0, otherwise the EEPROM would be damaged due to frequent erase of EEPROM. "Er.02" (Parameter Storage Error) will occur on the servo drive.

P12- 05	Parameter name	Setting method	Effective time	Defa ult	Ran ge	Category	U ni t
\$	RS422/RS485 function selection	Operation setting	Effective immediately	0	0 to 1	Communication parameter	-

Used to set the communication method of VD2F servo drive (The CN3 and CN4 of VD2F are time division multiplexing communication ports, and support RS422 and RS485 time division multiplexing)

Set value	Communication method
0	RS422 communication
1	RS485 communication

Note: "☆" indicates that only VD2F servo drive support this function code. The VD2-0XXSA1G model does not have this function code.

P12 -06	Parameter name	Setting method	Effective time	Def ault	Ra ng e	Category	U ni t				
☆	Modbus 32-bit variable high and low byte order										
Used	to set the data communication forr	nat when the s	ervo driver comm	nunicate	es with	ModBus.					
Set valu	Data definition e										
0	In big-endian, the low addre data.	ss stores high	16-bit data, and	the higl	n addre	ss stores low 16-bit					
1	1 In small-endian, the low address stores the low 16-bit data and the high address stores the high 16-bit data.										
	The data format of the servo drive must be consistent with that of the ModBus software; otherwise, communi- cation will fail.										

Group P13 Communication input and output terminal

P13- 01	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t		
	Virtual VDI_1 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P	06-04 is set to 1, DI_1 cha	annel logic is con	rolled by this function o	ode.					
	Set value		VDI_1 input level						
	0		Hig	ıh level					
	1		Low level						

P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t		
02	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P06-07 is set to 1, DI_2 channel logic is controlled by this function code.									

P13- 03	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
	Virtual VDI_3 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-
When P	06-10 is set to 1, DI_3 cha	annel logic is contr	olled by this function c	code.		1	

P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
04	Virtual VDI_2 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

When P06-13 is set to 1, DI_4 channel logic is controlled by this function code.

P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
05	Virtual VDI_5 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

When P06-16 is set to 1, DI_5 channel logic is controlled by this function code.

P13- 06	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t		
\$	Virtual VDI_6 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-		
When P06-19 is set to 1, DI_6 channel logic is controlled by this function code. "☆" indicates that the VD2F servo drive does not support this function code.									

P13- 07	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t	
☆	Virtual VDI_7 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	
When P06-22 is set to 1, DI_7 channel logic is controlled by this function code.								
"☆" indicates that the VD2F servo drive does not support this function code.								

Virtual VDI 8 input Operation Effective	P13- 08	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
value setting immediately 0 0 to 1 DI/DO	☆	Virtual VDI_8 input value	•		0	0 to 1	DI/DO	-

When P06-25 is set to 1, DI_8 channel logic is controlled by this function code.

" \raimin indicates that the VD2F servo drive does not support this function code.

1

P13- 11	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t	
	Virtual VDO_1 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	
Used to	set the input level logic wh	nen the DO functio	n selected by VDO_1	is valid				
	Set value		VDo_1 ii	nput leve	I			
	0		High level					

P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
12	Virtual VD0_2 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	

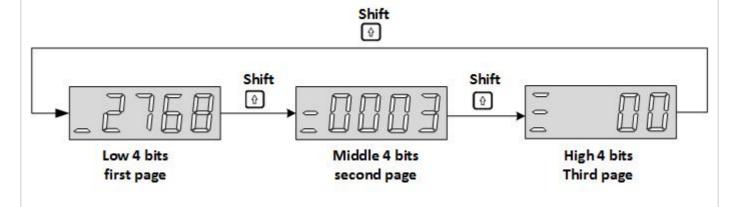
Low level

P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t
13	Virtual VD0_3 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-

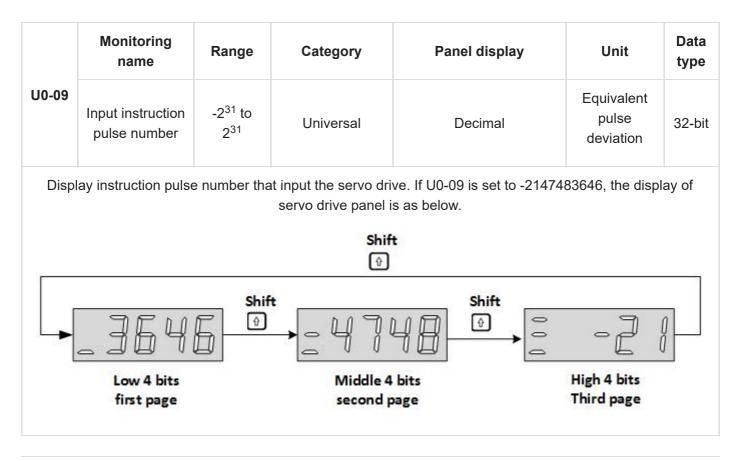
P13-	Parameter name	Setting method	Effective time	Defau It	Rang e	Categor y	Uni t	
14	Virtual VD0_4 input value	Operation setting	Effective immediately	0	0 to 1	DI/DO	-	

Group U0 Universal monitoring

U0-01	Monitoring name	Range	Category	Panel display	Unit	Data type			
00-01	Servo status	1 to 4	Universal	Decimal	-	16-bit			
Display the status of servo drive.									
Display value		Status		Display value		Status			
	1	Initialization		3		Run			
	2	Rdy and JOG		4		Fault			


U0-02	Monitoring name	Range	Category	Panel display	Unit	Data type		
00-02	Servo motor speed	-5000 to 5000	Universal	Decimal	rpm	16-bit		
Display the actual speed of servo drive. The accuracy is 1 rpm. The display of servo drive panel is as below.								
	500 rpm displa	-500 rpm display						
	50		-5[

110.02	Monitoring name	Range	Categ ory	Panel display	Unit	Data type	
		Univer sal	Decimal	rpm	16-bit		
Display input	speed instructio	n. The accu	racy is 1 r	pm. The display of servo dri	ve panel is	as below.	
	3000 rpm	display		-3000	-3000 rpm display		
	jű						

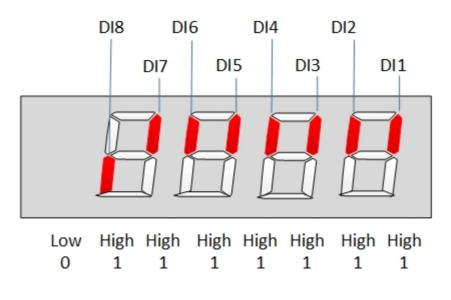

	Monitoring name	Range	Categor y	Panel display	Unit	Data type		
U0-04	Corresponding speed of position instruction	-5000 to 5000	Univers al	Decimal	rpm	16-bit		
Display the current speed instruction value of servo drive in position mode. The accuracy is 1 rpm. The dis- play of servo drive panel is as below.								
	3000 rpm dis	play		-3000 rpm display				
	JUL			- 3000				

U0-05	Monitoring name	Range	Cate gory	Panel dis- play	Unit	Data type
	Pulse deviation	-2 ³¹ to 2 ³¹	Univ ersal	Deci mal	Equivalent pulse deviation	32-bit

Display pulse deviation. If U0-05 is set to 32768, the display of servo drive panel is as below.

U0-08	Monitoring name	Rang e	Cate gory	Panel display	Unit	Data type				
00-08	Input instruction pulse frequency	-	Unive rsal	Decimal	KHz	16-bit				
Display the	Display the input instruction pulse frequency of servo drive.									

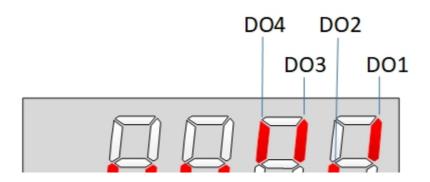
U0-12	Monitoring name	Range	Category	Panel display	Unit	Data type
	Real-time torque value	-3000 to 3000	Universal	Decimal	0.1%	16-bit


U 0	Monitoring name	Range	Category	Panel display	Unit	Data type
- 1 3	Encoder cumulative posi- tion (Lower 32 bits)	-2 ³¹ to 2 ³¹	Universal	Decimal	Encoder unit	32-bit

U0-	Monitoring name	Range	Catego ry	Panel display	Unit	Data type			
15	Encoder cumulative position (High 32 bits)	-2 ³¹ to 2 ³¹	Univers al	Decimal	Encoder unit	32-bit			
Displa	Display the cumulative data of encoder position. It is used with U0-13 cooperatively.								

U0-	Monitoring name	Range	Categor y	Panel display	Unit	Data type
17	DI input signal status	00000000 to 11111111	Universa I	Binary	Encoder unit	16-bit

Display the current level status of DI terminal. The upper part of the digital tube of servo drive panel is lit up to indicate a high level (denoted by "1"). The lower part is lit up to indicate a low level (denoted by "0").


Take the DI1 to DI7 terminals as the high level and DI8 as the low level as an example. The corresponding binary code is "01111111", and Wecon servo control device debugging software U0-17 displays the current binary value is 0b0111 1111. The panel of servo drive is displayed as below.

U0-	Monitoring name	Range	Categor y	Panel display	Unit	Data type
19	DO output signal status	00000000 to 00001111	Universa I	Binary	Encoder unit	16-bit

Display the current level status of 4 DO terminals. The upper part of the digital tube of servo drive panel is lit up to indicate a high level (denoted by "1"). The lower part is lit up to indicate a low level (denoted by "0").

Take the DO1, DO2 and DO3 terminals as the high level and DO2 as the low level as an example. The corresponding binary code is "1101", and Wecon servo upper computer debugging software U0-17 displays the current binary value is 0b0000 1101. The panel of servo drive is displayed as below.

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-20	Real-time load in- ertia ratio	0 to 1000000	Universal	versal Decimal		16-bit
Display tl	he current load inertia		ertia ratio is 3 tin ed as below.	nes (300%) , the pan	el of serv	o drive is dis-

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-21	Al1 input voltage value	-	Universal	Decimal	V	16-bit
	Reserved☆					

10.00V display	-10.00V display

" $\dot{\tt x}$ " indicates that the VD2F servo drive does not have this monitoring.

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-22	Al2 input voltage value	-	Universal	Decimal	V	16-bit
	Reserved☆					

 $`` \ddagger "$ indicates that the VD2F servo drive does not have this monitoring.

U0-23	Monitoring name	Range	Category	Panel display	Unit	Data type
00-23	Vibration Frequency	-	Universal	Decimal	Hz	16-bit

U0-24	Monitoring name	Range	Category	Panel display	Unit	Data type
00-24	Vibration amplitude	-	Universal	Decimal	rpm	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-25	Forward torque limit value	0 to 300	Universal	Decimal	%	16-bit

Display the set value of P01-15 (forward torque limit) of servo drive. If U0-25 is 288%, the panel of servo drive is displayed as below.

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-26	Reverse torque limit value	0 to 300	Universal	Decimal	%	16-bit
Display th	ne set value of P01-16 (limit) of servo d lisplayed as belo		, the pane	el of servo drive


	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-27	Forward speed limit value	0 to 5000	Universal	Decimal	rpm	16-bit

Display the set value of P01-12 (forward speed threshold) of servo drive. If P01-12 is set to 2000, the panel of servo drive is displayed as below.

110.28	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-28	Reverse speed limit value	-5000 to 0	Universal	Decimal	rpm	16-bit

Display the set value of P01-13 (reverse speed threshold) of servo drive. If P01-13 is set to 3000, the panel of servo drive is displayed as below.

U0-29	Monitoring name	Range	Catego ry	Panel display	Uni t	Data type
00-29	Mechanical angle	0 to 359	Univers al	Decimal	o	16-bit
D	isplay current mechan	ical angle c	of motor. 0 o	corresponds	to a me	echanical angle of 0 degree.

If the mechanical angle is 270°, the panel of servo drive is displayed as below.

110 20	Monitoring name	Range	Categor y	Panel display	Unit	Data type
U0-30	Electrical angle	0 to 359	Univers al	Decimal	o	16-bit

Display current electrical angle of motor. The accuracy is 1°. When the motor rotates, the angle range is 360°. When the motor is 4 poles, every time the motor is rotated one turn, it undergoes a change process of 0° to 359° four times.

U0-31	Monitoring name	Range	Categor y	Panel display	Unit	Data type
00-31	Bus voltage	-	Universa I	Decimal	V	16-bit

Display the DC bus voltage of the main circuit input voltage of servo drive after rectification. If the bus voltage is 310.9, the panel of servo drive is displayed as below.

110.22	Monitoring name	Ran ge	Category	Panel display	Unit	Data type
U0-32	Radiator temperature	-	Universal	Decimal	°C	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-33	Instantaneous output power	-	Universal	Decimal	W	16-bit

110.2	Monitoring name	Rang e	Categor y	Panel display	Unit	Data type
U0-34	Average output power	-	Universa I	Decimal	W	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-35	Total operation time (hour)	-	Universal	Decimal	h	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-37	Total operation time (minutes)	-	Universal	Decimal	min	16-bit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-38	Total operation time (seconds)	-	Universal	Decimal	S	16-bit

110 20	Monitoring name	Range	Category	Panel display	Unit	Data type		
U0-39	Load torque percentage	-	Universal	Decimal	%	16-bit		
Display summary land termine representance lifthe summary land termine representance is 40.20%, the representation								

Display current load torque percentage. If the current load torque percentage is 10.3%, the panel of servo drive is displayed as below.

Monitoring name	Range	Category	Panel display	Unit	Data type
Current operation time (hour)	-	Universal	Decimal	h	16-bit
Monitoring name	Range	Category	Panel display	Unit	Data type
Current operation time (minutes)	-	Universal	Decimal	min	16-bit
Monitoring name	Range	Category	Panel display	Unit	Data type
Current operation time (seconds)	-	Universal	Decimal	S	16-bit
Monitoring name	Range	Category	Panel display	Unit	Data type
Instantaneous braking resistor power	-	Universal	Decimal	W	16-bit
Monitoring name	Range	Category	Panel display	Unit	Data type
Average braking resistor					
	Current operation time (hour) Monitoring name Current operation time (minutes) Monitoring name Current operation time (seconds) Monitoring name Instantaneous braking resistor power Monitoring name	Current operation time (hour)RangeMonitoring nameRangeCurrent operation time (minutes)-Monitoring nameRangeCurrent operation time (seconds)-Monitoring nameRangeInstantaneous braking resistor power-Monitoring nameRange	Current operation time (hour)-UniversalMonitoring nameRangeCategoryCurrent operation time (minutes)-UniversalMonitoring nameRangeCategoryCurrent operation time (seconds)-UniversalMonitoring nameRangeCategoryCurrent operation time (seconds)-UniversalMonitoring nameRangeCategoryInstantaneous braking resistor power-UniversalMonitoring nameRangeCategoryInstantaneous braking resistor power-UniversalMonitoring nameRangeCategory	Current operation time (hour)-UniversalDecimalMonitoring nameRangeCategoryPanel displayCurrent operation time (minutes)-UniversalDecimalMonitoring nameRangeCategoryPanel displayCurrent operation time (seconds)-UniversalDecimalMonitoring nameRangeCategoryPanel displayCurrent operation time (seconds)-UniversalDecimalInstantaneous braking resistor power-UniversalDecimalMonitoring nameRangeCategoryPanel displayInstantaneous braking resistor power-UniversalDecimalMonitoring nameRangeCategoryPanel display	Current operation time (hour)-UniversalDecimalhMonitoring nameRangeCategoryPanel displayUnitCurrent operation time (minutes)-UniversalDecimalminMonitoring nameRangeCategoryPanel displayUnitCurrent operation time (minutes)-UniversalDecimalminMonitoring nameRangeCategoryPanel displayUnitCurrent operation time (seconds)-UniversalDecimalsMonitoring nameRangeCategoryPanel displayUnitInstantaneous braking resistor power-UniversalDecimalWMonitoring nameRangeCategoryPanel displayUnit

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-48	Power-on times	-	Universal	Decimal	Time s	16-bit
	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-50	Motor cumulative num- ber of turns (low 32 bits)	0 to 2 ³² - 1	Universal	Decimal	Cycle s	32-bit
	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-51	Motor cumulative num-					
	ber of turns (high 32 bits)	0 to 2 ³² - 1	Universal	Decimal	Cycle s	32-bit
U0-53	ber of turns (high 32	0 to 2 ³² - 1 Range	Universal Category	Decimal Panel display	-	32-bit Data type

Display current Motor model code. Take WD80M-07530S-A1F (A026) as an example, the panel of servo drive is displayed as below.

U0-54 —	Monitoring name	Range	Category	Panel display	Unit	Data type
	Absolute encoder position within 1 circle	0 to 2 ³² -1	Universal	Decimal	Encoder unit	32-bit

Display the single turn position feedback value of absolute encoder

	Monitoring name	Range	Category	Panel display	Unit	Data type
U0-55	Circle numbers of multi-turn ab- solute encoder	0 to 65535	Universal	Decimal	Encoder unit	16-bit

Display the circle number of multi-turn absolute encoder

	Monitoring name	Range	Categor y	Panel display	Unit	Data type
U0-56	Multi-turn absolute encoder current position	-2 ³¹ to 2 ³¹	Universa I	Decimal	Instruction unit	32-bit

Display the absolute position of motor (instruction unit). It is only valid is multi-turn absolute encoder motor

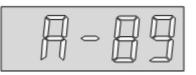
Group U1 Warning monitoring

U1-01 —	Monitoring name	Range	Category	Panel display	Unit	Data type
01-01	Current fault code	-	Warning	-	-	16-bit

If there is fault in servo drive, it would display the corresponding fault. If not, the panel displays "---".

Take the fault "encoder disconnect" as an example, the panel of servo drive is displayed as below.

Servo drive has an fault "encoder disconnection" Servo drive has no fault



U1-02 —	Monitoring name	Range	Category	Panel display	Unit	Data type
01-02	Current warning code	-	Warning	-	-	16-bit

If there is warning in servo drive, it would display the corresponding warning. If not, the panel displays "---".

Take the warning "DI port configuration duplication" as an example, the panel is displayed as below.

Servo drive has an warning "DI port configuration duplication" Servo drive has no warning

000

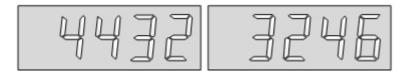
U1-03 -	Monitoring name	Range	Category	Panel display	Unit	Data type
01-05	U phase current when faults occur	-	Warning	Decimal	А	16-bit

U1-04 -	Monitoring	name		Ra	ange	Category	Pane	el displa	y Unit	Data typ
	V phase current who	en faults oo	ccur		-	Warning	D	ecimal	А	16-bit
ι	Mon J1-05	itoring nar	me	Ra ng e	Cate gory	Panel dis- play	U n it		Data tyj	De
		voltage wh aults occur	ien	-	Warn ing	Decim al	V		16-bit	
U1-06	Monitoring na	Ra me ng e	Cai goi		Pa	anel displa	y	Unit		Data type
	IGBT temperate when faults occ	-	Wa nin			Decimal		°C		16-bit
U1-07	Monitoring name	Ra e ng e	Ca	atego	ory	Panel	display	ι	Jnit	Data type
01-07	Torque componer when faults occu	-	V	Varnir	ng	De	cimal		%	16-bit
	Monitoring na	Ra me ng e	Ca go		Ρ	anel displa	ay	Unit		Data type
U1-08	Excitation comp nent when fau occur		Wa in			Decimal		%		16-bit
J1-	Monitoring n	ame		Ran e	g Ca	ategor y	Panel displa		Unit	Data type
09	Position deviation w occur	vhen faults		-	W	arning	Decima	al	Encoder unit	32-bit
14 40	Monitoring n	iame		Rang	je C	ategory	Panel	display	Unit	Data typ
J1-10 -	The speed when fa	aults occur		-	١	Narning	De	cimal	rpm	16-bit

114 44	Monitoring name	Range C	ategory	Panel display	Unit	Data type
U1-11	The time when faults occur	_ \	Warning	Decimal	S	16-bit
114 40	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-12	Number of faults in this operation	-	Warning	Decimal	-	16-bit
114 42	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-13 -	Number of warnings in this operation	on -	Warning	Decimal	-	16-bit
114 4 4	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-14	Total number of historical faults	-	Warning	Decimal	-	16-bit
114.45	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-15	Total number of historical warnings	; –	Warning	Decimal	-	16-bit
	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-16	The 1st fault code of the most rece	nt -	Warning	-	-	16-bit
			-			

U1-17	Monitoring name	Range	Category	Panel display	Unit	Data type
01-17	The 2nd fault code of the most recent	-	Warning	-	-	16-bit
114 40	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-18	The 3rd fault code of the most recent	-	Warning	-	-	16-bit
114 40	Monitoring name	Range	Category	Panel display	Unit	Data type
U1-19	Monitoring name The 4th fault code of the most recent	Range -	Category Warning	Panel display -	Unit -	Data type
U1-19 U1-20	-				Unit - Unit	

	Monitoring name	ang e	Catego	ry Pan	el display	Unit	Data type
U1-21	The 1st warning code of the		Warnin	g	-	-	16-bit
Display	the 1st warning code of the most rece	ent of s	ervo drive	9			
U1-22	Monitoring name		Range	Category	Panel displa	ay Unit	Data type
01-22	The 2nd warning code of the most re	ecent	-	Warning	-	-	16-bit
U1-23	Monitoring name		Range	Category	Panel displa	ay Unit	Data typ
01-23	The 3rd warning code of the most re	cent	-	Warning	-	-	16-bit
U1-24	Monitoring name		Range	Category	Panel displa	ay Unit	Data type
01-24	The 4th warning code of the most re	cent	-	Warning	-	-	16-bit
U1-25	Monitoring name		Range	Category	Panel displa	ay Unit	Data type
01-23	The 5th warning code of the most re	cent	-	Warning	-	-	16-bit


Group U2 Device monitoring

U2-01	Monitoring name	Range	Category	Panel display	Unit	Data type
02-01	Product series	-	Device	Hexadecimal	-	16-bit

Display the product series code of servo drive.

The product series code of VD2A and VD2B is 0x4432. The product series code of VD2F is 0x3246.

There are displayed as below.

112.02	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-02 —	Model	-	Device	Hexadecimal	-	16-bit
Display the	e servo drive model.					

U2-01display	U2-02 display	Model
		VD2-010SA1G
		VD2-014SA1G
	050 I	VD2-016SA1G
4432	160 i	VD2-019SA1G
		VD2-021SA1G
		VD2-025SA1G
		VD2-030SA1G
		VD2F-010SA1P
]246		VD2F-014SA1P

110.00	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-03 -	Model	-	Warning	Hexadecimal	-	16-bit
U2	2-01 display	U2-02 di	splay	U2-03 display	,	Model
D					0	-

U2-04	Monitoring name	Ran ge	Cate gory	Panel dis- play	Unit	Data type
	Firmware version	-	Devic e	Decima I	-	16-bit

Display the firmware version

Display format: X.YY. For example, 1.13. The panel is displayed as below.

U2-05	Monitoring name	Ran ge	Categ ory	Panel dis- play	Unit	Data type
	FPGA version	-	Devic e	Decima I	-	16-bit

Display the hardware version (FPGA)

Display format: X.YY. For example, 1.01. The panel is displayed as below.

	Monitoring name	Range	Category		Unit	Data type
U2-06	Manufacture date (year)		Device	Decimal	Year	16-bit
	Firmware date (year) *	-				

Display the year of manufacture of the VD2F drive firmware.

	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-07	Manufacture date (month)		Davias	Desimal		
	Firmware date (month) *	-	Device	Decimal	Month	16-bit

Display the month of manufacture of the VD2F drive firmware.

	Monitoring name	Ra ng e	Cate gory	Panel display	Un it	Data type
U2-08	Manufacture date (day)		Devi	-	Da	16-
	Firmware date (day) *		се	Decimal	у	bit

Displays the production date of the VD2F drive firmware.

For example, the firmware production day of VD2F-014SA1P_V1.01 is January 10, 2022, the panel is displayed as below.

U2-06	U2-07	U2-08
ļļ	0 0	

112 00	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-09 -	Device serial number 1	-	Warning	Decimal	-	16-bit
112 40	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-10 -	Device serial number 2	-	Warning	Decimal	-	16-bit
110 44	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-11 -	Device serial number 3	-	Warning	Decimal	-	16-bit
U2-12	Monitoring name	Range	Category	Panel display	Unit	Data type
02-12	Device serial number 4	-	Warning	Decimal	-	16-bit

U2-13	Monitoring name	Range	Category	Panel display	Unit	Data type
02-13	Device serial number 5	-	Warning	Decimal	-	16-bit
U2-14	Monitoring name	Range	Category	Panel display	Unit	Data type
02-14	Device serial number 6	-	Warning	Decimal	-	16-bit
112.45	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-15 -	Device serial number 7	-	Warning	Decimal	-	16-bit
112.46	Monitoring name	Range	Category	Panel display	Unit	Data type
U2-16	Device serial number 8		Warning	Decimal		16-bit

10 Malfunctions

Faults and warnings handling at startup

Position control mode

Boot process	Fault phenom- enon	Reaso n	Confirmation method
	1. Dig ital tub e do es not ligh t	Contro I termi- nal is dis- con- nected	 Rewiring L1C and L2C power lines are led separately from the socket
Power supply (L1, L2, L3) Turn on control supply (L1C, L2C)	up 2. Vol tag Contro e I the in- supply di- volt- cat age or failure do es not ligh Servo	up 2. Vol tag Contro e I the in- supply di- volt- cat age or failure do	Measures the AC voltage between L1C &L2C.
		Contact the agent or customer service	
	Panel display Refer to "Er.xx"		10.2 Handling of faults and warnings during operation
	After remov	ving the fa	ult, the servo drive panel should display "rdy"

Servo drive enable signal

is valid(S- ON is ON)	The axis	Servo enable signal	Scheck whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to <u>Group P06 DI/DO</u> <u>configuration</u>		
	motor is in a free running		Solution Not the serve of t		
	state	Contro I mode error	Check whether the parameter P00-01 is set correctly		
	Panel display Er.xx	Refer to	10.2 Handling of faults and warnings during operation		
	After troub	leshooting	, the servo drive panel should display "run"		
Input posi- tion instruction	The mo- tor does not rotate	U0-09 (input in- struc- tion pulse num- ber) always dis- plays 0	 Not input position instruction 1. Confirm whether DI terminal uses forward drive prohibited (DI function 3: POT) or reverse drive prohibited (DI function 4: NOT). 2. Confirm whether DI terminal uses instruction pulse input prohibited (DI function 11: INH) 3. When P01-06=0(position instruction source), PLC or other pulse output device do not output pulse. Please use oscilloscope to check whether there is pulse input or check U0-08 (input instruction pulse frequency). Refer to <u>4 Wiring</u> 4. When P01-06=1(position instruction source), please check whether the parameters of group P07 are set correctly. If yes, please confirm whether the DI function 20 (internal multi-segment position enable signal) and the corresponding DI terminal logic are set to be valid. Refer to <u>Group P07 multi-segment position</u> 		
	After troubleshooting, the servo motor should be able to rotate normally				
The motor does not rotate smoothly at low speed	Unstable low speed	Unrea son- able gain setting	Please adjust the gain.		
	The mo- tor shaft vibrates left and right	Load inertia ratio is too large	After the inertia recognition is complete, performs gain adjustment.		
	After troub	leshooting	the servo motor should be able to rotate normally		

After troubleshooting, the servo motor should be able to rotate normally

Inaccu- Normal rate operation position- ing	There is a posi- tion devia- tion that with the actual one sent by the host computer. If not, please check confirm whether the motor is blocked. not meet pro- duc- tion re- quire- ments
--	---

Speed control mode

Boot process	Fault phenome- non	Reason	Confirmation method
Power	1. Digital tube does not light	Control termi- nal is disconnected	 Rewiring L1C and L2C power lines are led separately from the socket
supply (L1, L2, L3) Turn on control sup-	cator does	Control the supply voltage failure	Measures the AC voltage between L1C &L2C.
ply (L1C, L2C)		Servo drive fault	Contact the agent or customer service
	Panel dis- play "Er.xx"	Refer to <u>10.2 Ha</u>	andling of faults and warnings during operation

After removing the fault, the servo drive panel should display "rdy"

Servo drive enable signal is valid(S-ON 10 Malfunctions

Boot process	Fault phenome- non	Reason	Confirmation method		
	1. Digital	Control termi-	Sewiring		
Power	tube does not light up 2. Voltag e indi- cator does not light up	nal is disconnected	L1C and L2C power lines are led separately from the socket		
supply (L1, L2, L3) Turn on control sup-		Control the supply voltage failure	Measures the AC voltage between L1C &L2C.		
ply (L1C, L2C)		Servo drive fault	Contact the agent or customer service		
	Panel dis- play "Er.xx"	Refer to <u>10.2 H</u>	andling of faults and warnings during operation		
	After removing the fault, the servo drive panel should display "rdy"				
	The axis of	Servo enable signal is invalid	Scheck whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to Group P06 DI/DO configuration ☐		
Servo drive enable sig- nal is	drive servo motor		Solution Not the serve of t		
valid(S-ON is ON)		Control mode error	Check whether the parameter P00-01 is set correctly		
	Panel dis- play Er.xx	Refer to <u>10.2 H</u>	andling of faults and warnings during operation		
	After troubles	hooting, the serve	o drive panel should display "run"		

		U0-03 (input	Al wiring error
		instruction pulse number) always dis-	When selecting analog input signal, make sure that the con- nection of analog input terminal is correct. Refer to <u>4 Wiring</u> .
		plays 0	Not input speed instruction or speed instruction abnormal
Input torque instruction	The motor does not rotate		 When selecting analog input signal, please confirm the AI parameters of group P05 is set correct, and then check the analog input voltage signal. It could be ob- served by oscilloscope or read by monitoring U0-21 and U0-22. When the internal speed instruction is given, please confirm P01-02 (internal speed instruction)is 0. When using multi-segment speed function, please con- firm the internal speed instruction parameters 0 to 7 of group P01 are right. Please confirm whether the ZERO-speed clamp func- tion is used for the DI terminal. (DI function 5: ZCLAMP)

After troubleshooting, the servo motor should be able to rotate normally

The motor	Unstable low speed	Unreasonable gain setting	Please adjust the gain.
does not ro- tate smoothly at low speed	The motor shaft vi- brates left and right	Load inertia ratio is too large	After the inertia recognition is complete, performs gain adjustment.

After troubleshooting, the servo motor should be able to rotate normally

Note: VD2F does not support monitoring u0-21 and U0-22.

Torque control mode

Boot process	Fault phenome- non	Reason	Confirmation method
Power supply			
(L1, L2, L3)			
Turn on control sup-			

	1. Digital tube does not light up 2. Voltag e indi- cator does	Control termi- nal is disconnected	 Rewiring L1C and L2C power lines are led separately from the socket 		
ply (L1C, L2C)		Control the supply voltage failure	Measures the AC voltage between L1C &L2C.		
	not light up	Servo drive fault	Contact the agent or customer service		
	Panel dis- play "Er.xx"	Refer to <u>10.2 H</u>	andling of faults and warnings during operation		
	After removing	g the fault, the se	rvo drive panel should display "rdy"		
Servo drive	The axis of servo motor is in a free running state	Servo enable signal is invalid	 Check whether group P06 is set the servo enable signal (DI function 1: S-ON). If it is, check whether the corresponding DI terminal logic is valid. If it is invalid, please make it valid. Refer to <u>Group P06 DI/DO configuration</u> If group P06 parameters have set the servo enable signal, and the corresponding terminal logic is valid, but the panel still displays "rdy", check whether the DI terminal wiring is 		
enable sig- nal is valid(S-ON is ON)		Control mode error	Check whether the parameter P00-01 is set correctly		
	Panel dis- play Er.xx		andling of faults and warnings during operation		
	After troubleshooting, the servo drive panel should display "run"				
			Al wiring error		
			When selecting analog input signal, make sure that the con- nection of analog input terminal is correct. Refer to <u>4 Wiring</u> .		
Input speed instruction	U0-03 (input The motor instruction does not pulse number) rotate always dis- plays 0	· ·	Not input torque instruction		
		pulse number) always dis-	 When selecting analog input signal, please confirm the AI parameters of group P05 is set correct, and then check the analog input voltage signal. It could be ob- served by oscilloscope or read by monitoring U0-21 and U0-22. When the internal speed instruction is given, please confirm P01.08 (torque instruction keyboard set yelue) 		

is 0.	
-------	--

After troubleshooting, the servo motor should be able to rotate normally

The motor	Unstable low speed	Unreasonable gain setting	Please adjust the gain.
does not ro- tate smoothly at low speed	The motor shaft vi- brates left and right	Load inertia ratio is too large	After the inertia recognition is complete, performs gain adjustment.

After troubleshooting, the servo motor should be able to rotate normally

Note: VD2F does not support monitoring u0-21 and U0-22.

Faults and warnings handling during operation

Overview

The faults and warnings of Wecon VD2 series servo drives are graded according to their severity, which can be divided into four grades: Category 1, Category 2, Category 3, Category 4. Severity level: Category 1> Category 2> Category 3 > Category 4, the specific classifications are as follows:

- Category 1: faults cannot be cleared;
- Category 2: faults are clearable;
- Category 3: faults are clearable;
- Category 4: warnings are clearable.

Among them, "clearable" means that the panel stops the fault display state by giving a "clear signal". The specific operations are as follows:

- 1. Set the function code P10-03=1 (fault clearing) or use DI function 02 (02-A-CLR, fault and warning clearing) and set it to logic valid, which can stop the fault display on the panel.
- 2. The clearing method of category 2 and category 3 clearable faults: first turn off the servo enable signal (set S-ON to OFF), then set P10-03=1 or use DI function 02.
- 3. The clearing method of category 4 of clearable warnings: set P10-03=1 or use DI function 02.

For some faults and warnings, you must change the settings to eliminate the causes before they can be cleared, but clearing does not mean that the changes take effect. For the changes that need to be re-powered to take effect, the power must be re-powered. For the changes that need to be stopped to take effect, the servo enable must be turned off. After the change takes effect, the servo drive can operate normally.

Associated function codes

Fun ctio n Cod e	Name	Settin g metho d	Effecti ve time	Defa ult valu e	Ra ng e	Definition	Unit
P10- 03	Fault clear- ing	Operati on setting	immedi- ately Effectiv e	0	0 to 1	0: No operation 1: For clearable faults, after the cause of fault is removed, and write 1 to the function code, the drive will stop the fault display and enter the Rdy (or RUN) state again. • Note: If the servo S-ON is valid, when the fault is re- moved and cleared, the servo will directly enter the Run state. When performing fault clearing actions, be sure to stop sending control instruc- tions such as pulses to en- sure personal safety.	-

Associated function number:

Code	Na me	Function name	Function
	A-	Fault and	DI port logic is invalid, no reset faults and warnings
2	CL R	warning clearing	DI port logic is valid, reset faults and warnings

VD2 series servo drives have a fault recording function, which could record the last 5 faults and the last 5 warning names and the status parameters of servo drive when the fault or warning occurs. After the fault or warning is cleared, the fault record will still save the fault and warning.

The current fault code could be viewed through the monitoring parameter U1-01, and the current warning code could be viewed through U1-02. The monitoring U1-16 to U1-25 could display the last 5 fault codes and warning codes. Please refer to <u>Group U1 Warning monitoring</u> **I**.

Fault and warning code table

The first category (category 1 for short) The fault could not be cleared

Categor y	Error name	Fault code	Content	Whethe r Clearab le	Operation
Category 1	Parameter destruction	Er.01	Abnormal servo internal parameters	No	Stop immedi- ately
Category 1	Parameter storage error	Er.02	Abnormal servo internal parameters	No	Stop immedi- ately
Category 1	ADC reference source faults	Er.03	Abnormal ADC reference source	No	Stop immedi- ately
Category 1	AD current sampling conver- sion error	Er.04	AD current sampling conver- sion error	No	Stop immedi- ately
Category 1	Abnormal FPGA communication	Er.05	Abnormal FPGA communication	No	Stop immedi- ately
Category 1	Wrong FPGA program version	Er.06	Wrong FPGA program version	No	Stop immedi- ately
Category 1	Clock abnormal	Er.07	Clock abnormal	No	Stop immedi- ately
Category 1	ADC conversion undone	Er.60	ADC conversion error	No	Stop immedi- ately
Category 1	Internal software fault	Er.61	Abnormal servo internal software	No	Stop immedi- ately
Category 1	Internal software fault	Er.62	Abnormal servo internal software	No	Stop immedi- ately
Category 1	Internal software fault	Er.63	Abnormal servo internal software	No	Stop immedi- ately
Category 1	Internal software fault	Er.64	Abnormal servo internal software	No	Stop

					immedi- ately
Category 1	Internal software fault	Er.65	Abnormal servo internal software	No	Stop immedi- ately
Category 1	Motor model error	Er.26	Motor model error	No	Stop immedi- ately
Category 1	Encoder Z pulse lost	Er.28	Encoder Z pulse lost	No	Stop immedi- ately
Category 1	Encoder UVW signal error	Er.30	Encoder UVW signal error	No	Stop immedi- ately
Category 1	Exceeds motor maximum speed	Er.32	Exceeds motor maximum speed	No	Stop immedi- ately
Category 1	Over current	Er.20	Servo drive hardware overcurrent	No	Stop immedi- ately
Category 1	The brake resistor is turned on abnormally	Er.24	The brake resistor of servo drive is turned on abnormally	No	Stop immedi- ately

The 2nd category (category 2 for short) clearable faults

Cat eg ory	Error name	Fault code	Content	Whether Clearable	Operation
Cat eg ory 2	Main power sup- ply overvolt- age	Er.22	Main power supply overvoltage	Yes	Stop immediately
Cat eg ory 2	Encoder disconnec- tion	Er.27	The encoder cable is incorrectly connected	Yes	Stop immediately
Cat					

eg-

ory	Power line	Er.31	The power cable is incorrectly	Yes	Stop
2	disconnec-		connected		immediately
	tion				

The 3rd Category (category 3 for short) clearable faults

Cat eg ory	Error name	Fault code	Content	Whether Clearable	Operation
Cat ego ry 3	Main power supply under voltage	Er.21	Main power supply under voltage	Yes	Stop immediately
Cat ego ry 3	Braking resistor is not connected	Er.23	Braking resistor is not connected	Yes	Stop immediately
Cat ego ry 3	Braking resistor resist ance is too large	Er.25	Braking resistor resistance is too large	Yes	Stop immediately
Cat ego ry 3	Power module is over temperature	Er.33	Power module is over temperature	Yes	Stop immediately
Cat ego ry 3	Motor overload prot ection	Er.34	Motor overload protection	Yes	Stop immediately
Cat ego ry 3	Electronic gear ratio ex- ceeds limit	Er.35	Electronic gear ratio exceeds limit	Yes	Stop immediately
Cat ego ry 3	Position deviation is too large	Er.36	Position deviation is too large	Yes	Stop immediately
Cat ego ry 3	Torque saturation ab normal	Er.37	Torque saturation abnormal	Yes	Stop immediately
Cat ego ry 3	Main circuit electricity is lack of phase	Er.38	Main circuit electricity is lack of phase	Yes	Stop immediately

Cat ego ry 3	Emergency stop	Er.39	Triggered the emergency stop signal	Yes	Stop immediately
Cat ego ry 3	Encoder bat- tery failure	Er.40	Encoder battery failure	Yes	Stop immediately
Cat ego ry 3	Motor (en- coder) over temperature	Er.41	Motor (encoder) over temperature	Yes	Stop immediately
Cat ego ry 3	Encoder write faults	Er.42	The encoder fails to write data	Yes	Stop immediately

The 4th category (category 4 for short) clearable warnings

_

Ca te go ry	Error name		Fault code	Content	W he th er Cl ea ra bl e	Op era- tion
Ca teg ory 4	Overspeed alarm	A-81		Motor exceeds the speed limit	Ye s	Con tinu e to run
Ca teg ory 4	Overload	A-82		The motor was run continuously with a torque exceeding the rated value	Ye s	Con tinu e to run
Ca teg ory 4	Braking resis- tor is over temperature or overloaded	A-83		Braking resistor is over temperature or overloaded	Ye s	Con tinu e to run
Ca teg ory 4	Parameter modification that needs to be powered on again	A-84		Modify the parame- ter that needs to be powered on again	Ye s	Con tinu e to run

306 / 402

Ca teg ory 4	Receive posi- tion pulse when servo is OFF	A-85	Servo drive receives position pulse when it is OFF	Ye s	Con tinu e to run
Ca teg ory 4	Input pulse frequen cy is too high	A-86	Input pulse frequency is too high	Ye s	Con tinu e to run
Ca teg ory 4	Main circuit momentary power off	A-88	Main circuit momentary power off	Ye s	Con tinu e to run
Ca teg ory 4	DI port config- uration is duplicate	A-89	DI port configuration is duplicate	Ye s	Con tinu e to run
Ca teg ory 4	DO port con- figuration is duplicate	A-90	DO port configura- tion is duplicate	Ye s	Con tinu e to run
Ca teg ory 4	Parameter modification is too frequent	A-91	Parameter modifica- tion is too frequent	Ye s	Con tinu e to run
Ca teg ory 4	low encoder battery voltage Warning	A-92	The battery voltage of encoder is less than 3.1V	Ye s	Con tinu e to run
Ca teg ory 4	Encoder read and write check abnor- mal and fre- quency is too high	A-93	Encoder read and write check abnormal and frequency is too high	Ye s	Con tinu e to run

Er.01 Parameter destruction

Fault

Servo drive panel display	Fault name
Er.01	Parameter destruction

Reason	Troubleshooting methods	Handling
EEPROM could not be read and written	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multi- ple operations, it is faulty.	Please contact the technician.

Er.02 Parameter storage error

Fault

Servo drive panel display	Fault name
Er.02	Parameter storage error

Troubleshooting

Reason	Troubleshooting methods	Handling
Firmware upgraded	Check whether the program has been upgraded.	Power on the servo drive again
Parameter read and write exceptions	After a parameter is changed, power it on again and check whether the parameter is saved	If the parameters are not saved after multiple power-on, contact technician.
Servo drive firmware faulty	Check if the servo drive monitoring quan- tity U2-04 (firmware version) is in the fol- lowing range.	VD2-0xxSA1G model: Contact manufacturer to upgrade the firmware to V1.14 and above.
	VD2-0xxSA1G model: earlier than V1.14. VD2F-0xxSA1P model: earlier than V1.02	VD2F-0xxSA1P model: Contact techni- cian to upgrade the firmware to V1.02 and above.

Er.03 ADC reference source fault

Fault

Servo drive panel display	Fault name
r mn	ADC reference source fault

Reason	Troubleshooting methods	Handling
The internal analog refer- ence source of the drive is not accurate	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms af- ter multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.04 AD current sampling conversion error

Fault

Servo drive pa	anel display	Fault name	
Troubleshooting	AD current sampling c	AD current sampling conversion error	
Reason	Troubleshooting methods	Handling	
Current sampling	Factory reset the parameter (P10-02=1) and	If there is still alarm after multi-	

ple power-on, contact the

technician.

power on again. If the servo drive still alarms after

multiple operations, it is faulty.

current sensor error

Er.05 FPGA communication abnormal

Fault

timeout

Servo drive panel display	Fault name
Er.05	FPGA communication abnormal

Troubleshooting

Reason	Troubleshooting methods	Handling
FPGA com- munication abnormal	Factory reset the parame- ter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.06 Wrong FPGA program version

Fault

Servo drive panel display	Fault name
Er.06	Wrong FPGA program version

Troubleshooting

Reason	Troubleshooting methods	Handling
The FPGA program version does not match firmware version	Check whether the moni- toring quantity of servo drive U2-04 (firmware version) and U2-05 (hard- ware version) conform to the following table	Contact techni- cal to upgrade FPGA (hard- ware version)
Servo drive fault	Factory reset the param- eter (P10-02=1) and power on again. If the servo drive still alarms af- ter multiple operations, it is faulty.	If there is still alarm after mul- tiple power-on, contact the technician.

	Firmware version	Hardware version
1.00	1.00	
1.10	1.01	
1.11	1.01	
1.12	1.01	
1.13	1.01	
1.14	1.01	

Table 10-1 The firmware version and hardware version relationship of VD2-0SA1G servo drive

Er.07 Clock abnormal

Fault

Servo drive panel display	Fault name
	Clock abnormal

Reason	Troubleshooting methods	Handling
External interference	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
	Check whether there are sources of interference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms af- ter multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.20 Overcurrent

Fault

Servo drive panel display		Fault name
Er.20	Overcurrent	

Troubleshooting

Reason	Troubleshooting methods	Handling
The UVW phase se- quence of motor power cable is incorrect	Check whether the phase sequence of the mo- tor power cable on the servo drive side and mo- tor side corresponds to each other.	Connect correctly according to UVW on the drive side and UVW on the motor side
Motor power lines are short-circuited	Check whether power line UVW is short-cir- cuited to PE	Replace motor power line
The motor power line wiring port is poorly contacted	Check whether the motor power line connection port is connected reliably	Tighten the fixing screws of the motor power line connection ports
Abnormal braking resistance	Internal brake resistance wiring error: check whether C, D are connected to the short cap and the contact is normal	Connect the short cap or short wire between C and D reliably
	External braking resistor wiring error: Check whether the external resistor is connected reli- ably between P+ and C.	External braking resistance is re- liably strung between P+ and C

Short-circuit of the built-in brake resistance:

Check whether the built-in brake resistance is short-circuit.	Remove the shorting cap between C and D, and reliably string the external braking resistor of equal resistance between P+ and C. Contact technician to replace the internal brak-	
	ing resistor	
The resistance value of the external braking re- sistor is too small: Test the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the actual resistor is too small	Choose a suitable external braking resistor	
Encoder wiring error; loose plug	Check whether the cable port (CN1) of the en- coder is properly connected	Tighten the fixing screws on the CN1 port
	Check whether the servo drive CN1 port jack is deformed	If the ca- ble is de- formed, replace the cable or its port
	Check whether both ends of the rectangular connector are reliably connected	Make sure that both ends of the rec- tangular connec- tor are con- nected reliably; Replace it with an encoder cable with higher connec- tion reliability.

Unreasonable parameter settings

-

	Check whether P03-02 (Load rigidity Level) is set properly	Reduce the P03-02 (load stiff- ness level) setting value appropriately
	Check whether the gain parameters are set properly, resulting in overshoot	Adjust gain parameters reasonably
Frequent acceleration and deceleration	Check whether the acceleration and decelera- tion motion is frequent or the acceleration and deceleration time is too small	Appropriately extend the acceler- ation and deceleration time
Internal servo drive fault	Cross-verification. Use the normal motor, en- coder cable to connect to the servo drive, only connect the encoder cable. If the servo drive still alarm, it is failure.	Contact technician for repair

Er.21 Main power supply undervoltage

Fault

Servo drive panel display	Fault name
Er.21	Main power supply undervoltage

Reason: DC bus voltage is lower than the fault value.

- 220V drive: DC bus voltage normal value is 310V; DC bus voltage fault value is 200V.
- 380V drive: DC bus voltage normal value is 540V; DC bus voltage fault value is 420V.

Reason	Troubleshooting methods	Handling
Power-off when VD2A drive is enabled	Check whether the servo drive is Power off when logic is valid.and the S-ON function is enabled in the P06 "DIDO Function configura- tion parameter".	It belongs to servo internal soft- ware logic. When the indicator light on the servo drive panel goes out automatically, the alarm will be removed automatically.
The power supply is un- stable or OFF.	Check whether the drive input power specifi- cations meet the following specifications: 220V drive: Valid value is 198V to 242V. 380V drive: Valid value is 342V to 440V.	Use after the power supply is sta- ble; Increase power supply capacity
The voltage drops dur- ing operation of the servo drive	Check whether the servo drive shares the same power supply with other high loads	Turn off other loads from the same main circuit power supply. Separate power supply for servo drives

Missing phase (3-phase	Check if the main circuit wiring is correct	Connect the main circuit wiring
power supply operating on single-phase power)	VD2A: single-phase 220V input connected to L1, L3.	correctly
	VD2 B: single-phase 220V input connected to L1, L3, and single-phase 220V input connected to L1C, L2C.	
	VD2 B: three-phase 220V input connected to L1, L2, L3.	
	VD2F: single-phase 220V input connected to L1, L2	
Internal servo drive fault	Observe whether the monitoring quantity U0- 31 (bus voltage) is in the following range: 220V drive: U0-31 less than 200V; 380V drive: U0-31 less than 400V.	Contact technician for repair

Er.22 Main power supply overvoltage

Fault

Servo drive panel display

Fault name

Main power supply overvoltage

Reason: DC bus voltage is bigger than the fault value.

- 1. 220V drive: DC bus voltage normal value is 310V; DC bus voltage fault value is 390V.
- 2. 380V drive: DC bus voltage normal value is 540V; DC bus voltage fault value is 670V.

Reason	Troubleshooting methods	Handling
The input voltage is too high	Check whether the drive input power specifica- tions meet the following specifications: 220V drive: Valid value is 198V to 242V. 380V drive: Valid value is 342V to 440V.	Replace or adjust power supply
The power supply is not stable or struck	Check whether the input power supply of the servo drive meets the specifications and moni-	used after the power supply is stable
by lightning	tor whether it has been struck by lightning.	Connect to surge suppressor
Abnormal braking resistance	Internal brake resistance wiring error: check whether C, D are connected to the short cap and the contact is normal	Connect the short cap or short wire between C and D reliably

Abnormal braking resistance	External braking resistor wiring error: Check whether the external resistor is connected reli- ably between P+ and C.	External braking resistance is reli- ably strung between P+ and C
	Short-circuit of the built-in brake resistance: Check whether the built-in brake resistance is short-circuit.	Remove the shorting cap between C and D, and reliably string the ex- ternal braking resistor of equal re- sistance between P+ and C.
		Contact technician to replace the internal braking resistor
	The resistance value of the external braking re- sistor is too large: Check the resistance value of the external braking resistor actually se- lected and compare it with the recommended braking resistor to confirm whether the resis- tance value of the actual resistor is too large.	Choose a suitable external braking resistor
The motor is in a state of rapid acceler- ation and decelera- tion motion	Monitor the servo drive monitoring quantity U0- 31 (bus voltage) to confirm whether the voltage exceeds the fault value when the motor is in the deceleration section.	Ensure that the input voltage is within specification and increase acceleration and deceleration times
Internal servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged.Contact technician for repair

Er.23 Braking resistor is not connected

Fault

Servo drive panel display	Fault name
Er.2]	Braking resistor is not connected

Reason	Troubleshooting methods	Handling
Internal brake resis- tance wiring error	Check whether C, D are connected to the short cap and the contact is normal	When using an internal braking resis- tor, reliably connect the shorting cap or shorting wire between C and D
External braking resistor wiring error	Check whether the external resistor is con- nected reliably between P+ and C.	When using an external braking resis- tor, the external resistor is reliably strung between P+ and C

Contact the technician to replace the internal braking resistor.

Use an external braking resistor and change the relevant parameters of the P00 "Basic Settings".

Er.24 Braking resistor turns on abnormally

Fault

Servo drive panel display	Fault name
Er.24	Braking resistor is not connected

Troubleshooting

Reason	Troubleshooting methods	Handling
Internal servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged.Contact technician for repair

Er.25 Braking resistor resistance is too large

Fault

Servo drive panel display	Fault name
Er.25	Braking resistor resistance is too large

Troubleshooting

Reason	Troubleshooting methods	Handling
The resistance value of the external braking resistor is too large	Check the resistance value of the external braking resistor actually selected and compare it with the recommended braking resistor to confirm whether the resistance value of the ac- tual resistor is too large.	Choose a suitable external braking resistor
Unreasonable param- eter settings	Check whether the value of servo drive P00-10 (external brake resistance) is set too high	Reasonably set the P00-10 (exter- nal braking resistor resistance) pa- rameter value

Servo drive firmware

fault	Check if the servo drive monitoring quantity U2-04 (firmware version) is in the following range.	VD2-0xxSA1G model: Contact manufacturer to upgrade the firmware to V1.14 and above.
	VD2-0xxSA1G model: earlier than V1.14. VD2F-0xxSA1P model: earlier than V1.02	VD2F-0xxSA1P model: Contact technician to upgrade the firmware to V1.02 and above.

Er.26 Braking resistor resistance is too large

Fault

Servo drive panel displa	y Fault name
Er.26	Motor code wrong

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drives do not support this motor	Check whether the servo driver model sup- ports the motor	Contact technical for suitable recom- mendations of servo drive model or motor model.
Wrong motor model	Check whether the Motor Code is consistent with the Motor nameplate	Contact technician to record the mo- tor Motor Code

Er.27 Encoder disconnection

Fault

Servo drive panel display	Fault name
Er.27	Encoder disconnection

Troubleshooting

Reason	Troubleshooting methods	Handling
Poor contact on CN1 port	Check whether the cable port (CN1) of the encoder is properly connected	Tighten the fixing screws on the CN1 port
	Check whether the servo drive CN1 port jack is deformed	If the cable is deformed, replace the cable or its port

Poor contact

on adapter port (Rectangular con- nection cable)	Check whether both ends of the rectangu- lar connector are reliably connected	Make sure that both ends of the rec- tangular connector are connected re- liably; Replace it with an encoder ca- ble with higher connection reliability.
Wrong encoder cable wiring	Check whether the both ends of the en- coder cable are correctly connected	Adjust wiring according to the corre- sponding relationship of pins; The standard encoder cable of the manufacturer is preferred.

Er.28 Encoder Z pulse lost

Fault

Servo drive panel display	Fault name
Er.28	Encoder Z pulse lost

Troubleshooting

Reason	Troubleshooting methods	Handling
Wrong motor model	Check whether the Motor Code is consis- tent with the Motor nameplate	Contact technician to record the motor Motor Code
External interference	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
	Check whether there are sources of interfer- ence such as power supply inverter equip- ment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power cable wiring.
Encoder fault	Manually rotate the motor shaft counter- clockwise or clockwise to observe whether the monitoring quantity U0-30 (electrical an- gle) changes regularly	If the value of U0-30 (electrical angle) changes abruptly or does not change, the encoder itself may have problems, please replace the motor or encoder.

Er.30 Encoder UVW signal error

Fault

Servo drive panel display

Fault name

Encoder UVW signal error

Reason	Troubleshooting methods	Handling
External interference	Check that the motor and servo drive are well grounded	Motor and servo drive are well grounded
Encoder cable fault	Cross-verification. Use the normal motor, en- coder cable to connect to the servo drive.	Replace it with an encoder cable with higher connection reliability.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged.Contact technician for repair

Er.31 Power line disconnection

Fault

Servo drive panel display	Fault name
Er.]	Power line disconnection

Troubleshooting

Reason	Troubleshooting methods	Handling
The motor power line wiring port is poorly contacted	Check whether the motor power line connection port is connected reliably	Tighten the fixing screws of the motor power line connection ports
The power cable is disconnected	Check the power cable for disconnec- tions at both ends	Replace the power cable and power on again.
Poor contact on adapter port (Rectangular con- nection cable)	Check whether both ends of the rec- tangular connector are reliably connected	Make sure that both ends of the rectangu- lar connector are connected reliably; Replace it with an encoder cable with higher connection reliability.

Er.32 Exceeds motor maximum speed

Fault

Servo drive panel display

Exceeds motor maximum speed

Reason	Troubleshooting methods	Handling
The UVW phase sequence of motor power cable is incorrect	Check whether the phase sequence of the motor power cable on the servo driver side and motor side corresponds to each other.	Connect correctly according to UVW on the drive side and UVW on the motor side
P01-10 parameter Settings are incorrect	Check that the parameter value of P01- 10 (maximum speed threshold) is less than the maximum speed required for the actual operation of the motor	Reset P01-10 (maximum speed threshold) according to mechani- cal requirements
	Check whether the motor speed corre- sponding to the input instruction exceeds P01-10 (maximum speed threshold).	
	Position mode, when the instruction is from a pulse instruction (P01-06 = 0).	
	Motor speed (rpm) = input pulse fre- quency (Hz) * 60 * electronic gear ratio / encoder resolution	
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged. Please replace the servo drive.

Er.33 Power module is over temperature

Fault

Servo drive panel display	Fault name
Er.JJ	Power module is over temperature

Reason	Troubleshooting methods	Handling
Ambient temperature is too high	Measure the ambient temperature	Reduce the ambient temperature of the servo drive
The cooling fan is faulty	Check the servo drive fan for blockage or damage	Contact technician for fan repair or replacement
The servo drive is mounted in an unreasonable orienta- tion or the spacing between the servo drives is unreasonable	Check whether the servo drive installation is reasonable	Contact technical to obtain the in- stallation standard of the servo drive

Restarting after 10 minutes of power fail-
ure is still reportedServo dr
Please re

Servo drive may be damaged. Please replace the servo drive.

Er.34 Motor overload protection

Fault

Servo drive panel display

Fault name

Motor overload protection

Troubleshooting

Ēr.

Reason	Troubleshooting methods	Handling
Motor power cable, encoder cable wiring error	Check whether the motor power cable and encoder cable wiring are correct.	Connect them according to the correct connection method.
		Priority is given to the use of motor power lines and encoder cables as standard by manufacturers
The load is too large	Check overload characteristics of motor or	Reduce the load.
	servo drive	Contact technical to obtain the appro- priate capacity drive and motor model.
Frequent acceleration and deceleration	Check whether the acceleration and decel- eration motion is frequent or the accelera- tion and deceleration time is too small	Appropriately extend the acceleration and deceleration time
Motor model and servo driver do not match	Check the monitoring quantity U0-53 (mo- tor model code).	Contact technician to obtain the match- ing motor model.
Unreasonable parameters	Use Wecon SCTools to obtain the actual torque waveform and observe whether overshoot is obvious	Set the appropriate loop gain parameters
	Observe whether the motor vibrates during operation	Set the appropriate rigidity level
	Check whether p10-04 (Motor overload protection time coefficient) is reasonable	Increase P10-04 (motor overload pro- tection time factor) in the case of en- suring that the motor will not burn out.
Motor blockage	Check if the motor is blocked due to me- chanical jamming of the load.	Release the mechanical jam.

The brakes are not open	Check whether the brake device is opened normally, and check whether the output voltage of the brake is 24V	Check the logic of brake power supply or brake output signal
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

Er.35 Electronic gear ratio exceeds limit

Fault

Servo drive panel display	Fault name
Er.35	Electronic gear ratio exceeds limit

Troubleshooting

Reason	Troubleshooting methods	Handling
setting is greater than the 17/	Check that the ratio of function codes P01- 17/P01-18, P01-19/P01-20 is in the following range.	After modifying the corre- sponding function code ac- cording to the range, set P10-
	17bit absolute encoder upper limit value: 500.	03 (fault clearance) to 1.
	23bit absolute encoder upper limit value: 32000	
The electronic gear ratio setting is less than the set-table range	Check that the ratio of function codes P01- 17/P01-18, P01-19/P01-20 is in the following range.	
	17bit absolute encoder lower limit value: 500.	

Er.36 Position deviation is too large

Fault

Servo drive panel display

Fault name

Position deviation is too large

Reason	Troubleshooting methods	Handling
Cable error	Check whether the phase sequence of the motor power cable on the servo driver side and motor side corresponds to each other.	Connect correctly according to UVW on the drive side and UVW on the mo- tor side
	Check whether both ends of the power ca- ble are disconnected	Replace the power cable and power on again
Unreasonable pa- rameter settings	Check whether P03-02 (Load rigidity Level) is set properly	Reduce the P03-02 (load stiffness level) setting value appropriately
	Check whether the gain parameters are set properly, resulting in overshoot	Adjust gain parameters reasonably
	Check whether P00-25 (position deviation threshold) is set properly	Increase the value of P00-25 (position deviation threshold)
	Use Wecon SCTools to obtain the equiva- lent speed of the position instruction and check whether the speed is greater than the motor speed limit	Increase the setting values of P01-12 (forward speed threshold) and P01-13 (reverse speed threshold) according to mechanical requirements
Motor blockage	Check if the motor is blocked due to me- chanical jamming of the load.	Release the mechanical jam.
The brakes are not open	Check whether the brake device is opened normally, and check whether the output volt- age of the brake is 24V	Check the logic of brake power supply or brake output signal
The input pulse fre- quency is too high	Position mode: when the instruction comes from the pulse instruction (P01-06=0), check whether the input pulse frequency is too high	Reduce the input pulse frequency
The equivalent veloc- ity of position instruc- tion changes too fast	Check if the position instruction changes too fast in the equivalent speed	Properly increase the acceleration and deceleration time and reduce the rate of change of the speed

Er.37 Torque saturation abnormal

Fault

Servo drive panel display

Fault name

Torque saturation abnormal

Er.]]

Reason	Troubleshooting methods	Handling
Motor power line cable UVW phase se- quence error	Check whether the phase sequence of the motor power cable on the servo driver side and motor side corre- sponds to each other.	Connect correctly according to UVW on the drive side and UVW on the motor side
Unreason able pa- rameter settings	Check whether P01- 19 Torque saturation timeout) is set properly	Increase P01-19 Torque saturation timeout) setting value appropriately
seungs	Check whether P01-15 (forward torque limit) and P01-16 (reverse torque limit) are set reasonable	Increase the setting values of P01-15 (forward torque limit) and P01- 16 (reverse torque limit) appropriately
	Check whether the gain parameters are set properly	Adjust gain parameters reasonably
	Check whether the gain parameters are set properly	Increase the acceleration and deceleration time
The load is too heavy	Check whether the load is too heavy	Reduce the load
Motor blockage	Check whether the mo- tor is blocked due to mechanical jamming of the load.	Release the mechanical jam.
The brakes are not open	Check whether the brake device is opened normally, and check whether the output volt- age of the brake is 24V	Check the logic of brake power supply or brake output signal
Limit switches are mounted outside the travel	Check whether the limit switch is installed out- side the travel	Adjust the installation position of limit switch

Er.38 Main circuit electricity is lack of phase

Fault

Servo drive panel display	Fault name
	Main circuit electricity is lack of phase

Troubleshooting

Reason	Troubleshooting methods	Handling
Cable error	Check whether the motor power line con- nection port is connected reliably	Tighten the fixing screws of the motor power line connection ports
	Check the power ca- ble for disconnections at both ends	Replace the power cable and power on again.
Three-phase specification drives run on single-phase power supplies	Check whether the three-phase drive has a single-phase power supply	Connect a three-phase power supply according to the power supply specifications
The power supply is un- stable or off	Check that the drive input power specifica- tions meet the specifications: 220V drive valid value: 198V to 242V. 380V drive valid value: 342 V to 418V	Use after the power supply is stable.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

Er.39 Emergency stop

Emergency stop

Servo drive panel display	Fault name

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive receives emergency	Check whether emergency stop protection is triggered manually	Power on the servo drive again
	Check whether the servo drive has mistakenly trig- gered the emergency stop signal.	Properly wire the DI port
	Check whether function 08 (E-STOP) is configured in the P06 group "DIDO configuration" function code group "DI port function selection" and whether the DI port wiring is normal.	

Er.40 Encoder battery failure

Fault

Servo drive panel display Fault name

Encoder battery failure

Troubleshooting

Reason	Troubleshooting methods	Handling
Multi-turn absolute encoder is not connected to the battery during the power off of the servo drive	Check if the encoder is connected to the battery during the power off of the servo	Set P10-03 (Fault clearing) to 1
The voltage of multi-turn absolute encoder battery is low	Measure battery voltage	Contact technicians to replace with a new encoder battery

Er.41 Motor (encoder) over temperature

Servo drive panel display	Fault name
Fry 1	Motor (encoder) over temperature

Troubleshooting

Reason	Troubleshooting methods	Handling
The motor is overloaded	Check whether the mo- tor is overloaded	Reduce the load of the motor

Er.42 Encoder write fault fault

Fault

Servo drive panel display	Fault name
Er.42	Encoder write faults

Reason	Troubleshooting methods	Handling
Poor contact of CN1 port	Check whether the ca- ble port (CN1) of the encoder is properly connected	Tighten the fixing screws on the CN1 port
	Check whether the servo drive CN1 port jack is deformed	If the cable is de- formed, replace the cable or its port
Poor contact on adapter port (Rectangular connection cable)	Check whether both ends of the rectangu- lar connector are reli- ably connected	Make sure that both ends of the rectan- gular connector are connected reliably; Replace it with an encoder cable with higher connection reliability.
External interference	Check for strong mag- netic fields nearby	Eliminate nearby strong magnetic interference
	Check whether there are sources of inter- ference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and

	servo drive, and keep away from power ca- ble wiring.	
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

Er.43 Drive overload fault

Fault

Servo drive panel display	Fault name
➢file:///C:/Users/16127/AppData/Local/Temp/msohtmlclip1/01/clip_image001.emz ➢file:///C:/Users/16127/AppData/Local/Temp/msohtmlclip1/01/clip_image001.emz	Drive overload
Er.43	fault

Reason	Troubleshooting	Handling
The average output power (U0-34) ex- ceeds the limit power (overload 110%) for more than 20 minutes.	Whether the average out- put power (U0-34) often exceeds the limit (over- load 110) Check whether the drive meets the requirements.	Observed whether the U0-34 is often greater than the servo limit power (overload 110%) during servo operation. When ER.43 alarm is found in the process of machine adjustment, please check whether the servo power is suitable. It is recommended to replace the driver model with higher power.
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, contact the manufacturer's technician for repair.

Drive Model	Rated Power/W	Limit Power/W (Overload 110%)
VD2-010SA1G/SA1H	400	440
VD2-014SA1G/SA1H	750	825
VD2-016SA1G/SA1H	1500	1650
VD2-019SA1G/SA1H	2300	2530
VD2-021SA1G/SA1H	2300	2530
VD2-025SA1G/SA1H	2600	2860
VD2-030SA1G/SA1H	2600	2860
VD2F-010SA1G	400	440
VD2F-014SA1G	750	825
VD2-021TA1G	3000	3300

Er.60 ADC conversion is not complete

Fault

 Servo drive panel display
 Fault name

 ADC conversion is not complete

Troubleshooting

Reason	Troubleshooting methods	Handling
External interference	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
	Check whether there are sources of interfer- ence such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact between motor and servo drive, and keep away from power ca- ble wiring.
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.61 Internal software fault

Servo drive panel display	Fault name
Er.6 I	Internal software fault
Troubleshooting	

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.62 Internal software fault

Fault

Servo drive panel display	Fault name
Er.62	Internal software fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms af- ter multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.63 Internal software fault

Fault

Servo drive panel display	Fault name
Er.63	Internal software fault

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

Er.64 Internal software fault

Fault

Servo drive panel display		Fault name
Troubleshooting	Internal software fault	
Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms af-	If there is still alarm after multiple power-on, contact the technician.

ter multiple operations, it is faulty.

Er.65 Internal software fault

Fault

Servo drive panel dis	play Fault name
Er.65	Internal software fault

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo drive fault	Factory reset the parameter (P10-02=1) and power on again. If the servo drive still alarms after multiple operations, it is faulty.	If there is still alarm after multiple power-on, contact the technician.

A-80 Drive overpower warning

	Servo drive panel dis	splay	Alarm name
<pre>>file:///C:/Users/1612</pre>	27/AppData/Local/Temp/msoht	mlclip1/01/clip_image001.emz	Drive overpower warning
Troubleshooting			
Reason	Troubleshooting	Handling	

The average output power (U0-34) exceeds the limit power of the drive (overload 110%) for more than 5 seconds, the drive will have alarm.

Check whether the average output power (U0-34) exceeds the limit (overload 110) The average output power (U0-34) exceeds the limit power (overload 110%) for more than 5 minutes. Check whether the U0-34 exceeds 110% of the rated power of the driver.

Check whether the U0-34 exceeds 110% of the rated power of the driver. When A80 alarm is found in the process of machine adjustment, please check whether the servo power is suitable.

Drive Model	Rated Power/W	Limit Power/W (Overload 110%)
VD2-010SA1G/SA1H	400	440
VD2-014SA1G/SA1H	750	825
VD2-016SA1G/SA1H	1500	1650
VD2-019SA1G/SA1H	2300	2530
VD2-021SA1G/SA1H	2300	2530
VD2-025SA1G/SA1H	2600	2860
VD2-030SA1G/SA1H	2600	2860
VD2F-010SA1G	400	440
VD2F-014SA1G	750	825
VD2-021TA1G	3000	3300

A-81 Overspeed alarm

Fault

Servo drive panel display

Fault name

Overspeed alarm

Reason	Troubleshooting methods	Handling
Motor power line ca- ble UVW phase se- quence error	Check whether the phase sequence of the mo- tor power cable on the servo driver side and motor side corresponds to each other.	Connect correctly according to UVW on the drive side and UVW on the motor side
P01-11 parameter setting is not proper	Check whether the value of P01-11 (warning speed threshold) is less than the max speed required for the operation of motor	Reset P01-11 (warning speed threshold) according to mechanical requirements

Input speed com-	Check whether the motor speed corresponding	Reduce
mand is too high	to the input command exceeds P01-11 (maxi-	accordi
	mum speed threshold)	ments;

Reduce the input speed instruction according to the mechanical requirements; Reasonably increase P01-11 (warning speed threshold)

A-82 Overload

Fault

Servo drive panel display	y	Fault name
A-82	Overload	

Reason	Troubleshooting methods	Handling
Motor power ca- ble, en- coder ca- ble wiring error	Check whether the mo- tor power cable and en- coder cable wiring are correct.	Connect them according to the correct connection method. Priority is given to the use of motor power lines and encoder cables as standard by manufacturers
The load is too large	Check overload charac- teristics of motor or servo drive	Reduce the load. Contact technical to obtain the appropriate capacity drive and motor model.
Motor model and servo driver do not match	Perform inertia identifi- cation and check the in- ertia ratio.	Contact technician to obtain the matching motor model.
Motor model and servo driver do not match	Check the monitoring quantity U0-53 (motor model code).	Contact technician to obtain the matching motor model.
Unreasona ble parame- ters	Use Wecon SCTools to obtain the actual torque waveform and observe whether overshoot is obvious	Set the appropriate loop gain parameters
	Observe whether the	

motor vibrates during operation

Set the appropriate rigidity level

A-83 Braking resistor is over temperature or overloaded

Fault

Servo drive panel display	
---------------------------	--

Fault name

Braking resistor is over temperature or overloaded

Troubleshooting

Reason	Troubleshooting methods	Handling
Improper connection of internal braking resistor	Check whether C, D are connected to the short cap and the contact is normal	When using an internal braking resis- tor, reliably connect the shorting cap or shorting wire between C and D
Improper connection of external braking resistor	Remove the external braking resistor and measure whether the resistance value is " image-20220709163326-87.png" (infinity)	Replace the new external braking re- sistor. After ensuring that the resis- tance value of the resistor is the same as the nominal value, connect it in se- ries between P+ and C.
The resistance value of the external brak- ing resistor is too large	Test the actual external braking resistor re- sistance and compare it with the recom- mended braking resistor to make sure the actual resistance is not too large.	Use a suitable external braking resistor.
Improper parameter setting	When using an external braking resistor, check the following parameters.	Reasonable setting of P00-09 (brak- ing resistor setting):
	Whether P00-09 (braking resistor setting) is reasonable.	P00-09=1 (use external braking resis- tor and natural cooling)
	P00-10 (external braking resistor resistance value) is reasonable.	P00-09 = 3 (do not use the braking re- sistor, all by capacitor absorption)
		P00-10 (external braking resistor re- sistance value) parameter value and the actual actual use of external brak- ing resistor are consistent.

A-84 Parameter modification that needs to be powered on again

Servo drive panel display	Fault name
8-84	Modified parameters that need to be powered on again to take effect

Troubleshooting

Reason	Troubleshooting methods	Handling
Modified the effective timing to "power on again" parameter.	Check whether the servo drive has modified the pa- rameter with the effective time "power on again".	Power on again

A-85 Receive position pulse when servo is OFF

Fault

Servo drive panel display	Fault name
A-85	Receive position pulse when servo is OFF

Troubleshooting

Reason	Troubleshooting methods	Handling
Servo received position pulse when it is OFF.	Check whether the servo drive is in the OFF state, and check whether the host computer is sending pulse instruction.	The host computer stops sending pulse instructions.
Servo received pulse in- struction in non-position	Check whether the servo drive P00-01 (control mode) is in position mode;	
mode	Check whether the host computer is sending pulse instructions	

A-86 Input pulse frequency is too high

Fault

Servo drive panel display

A - 86

Input pulse frequency is too high

Fault name

Reason	Troubleshooting methods	Handling
The input pulse frequ ency is too high	Position mode; When the instruction source is pulse instructions (P01- 06=0), check whether the input pulse fre- quency is too high	Reduce the input pulse frequency
Improper parameterCheck whether the pa- rameter value of P01- 16 (number of instruc- tion pulses for one rota- tion of the motor) is greater than the actual demand value.		Reset P01-16 according to mechanical requirements (number of in- struction pulses for one rotation of motor).
	Check whether the pa- rameter value of P01- 17 to P01-20 (elec- tronic gear ratio) is greater than the actual demand value.	Reset parameter of values P01-17 to P01-20 (electronic gear ratio) according to mechanical requirements

A-88 Main circuit momentary power off

Fault

Servo drive panel display	Fault name
8-88	Main circuit momentary power off

Reason	Troubleshooting methods	Handling
Power off	Check that the drive input power specifica- tions meet the specifications:	Use it after the power supply is stable
	220V drive valid value: 198V to 242V.	
	380V drive valid value: 342V to 418V	
Servo drive fault	The servo drive is still faulty after power on again	Servo drive may be damaged, please contact technician for repair.

A-89 DI port configuration is duplicate

Fault

Servo drive panel display	Fault name
A-89	DI port configuration is duplicate

Troubleshooting

Reason	Troubleshooting methods	Handling
The same non-zero DI function is assigned to multiple DI ports	Check whether the "DI port function selection" of the "DIDO Configuration" function code group of the P06 group is configured with the same DI function	Configuring each DI port for different DI functions and power on again. Configure the func- tion of the un- wanted DI ports to 0 (off) and power on again.
		Factory reset the parameter P10- 02=1, and power on again.

A-90 DI port configuration is duplicate

Fault

Servo drive panel display

DO port configuration i duplicate

Reason	Troubleshooting methods	Handling
The same non-zero DO function is assigned to multiple DO ports	Check whether the "DO port function selec-	
pond	tion" of the "DIDO	
	Configuration" function	
	code group of the P06	

group is configured with the same DO function	Configuring each DO port for differ- ent DO functions and power on again.
	Configure the function of the un- wanted DO ports to 0 (off) and power on again.
	Factory reset the parameter P10- 02=1, and power on again.

A-91 Parameter modification is too frequent

Fault

Servo drive panel display	Fault name
8-91	Parameter modification is too frequent (modification fre- quency allowed of function code: 6 hours/150 times
	Note: 32-bit function code: recorded as 2 times)

Reason	Troubleshooting	Handling
EEPROM writing frequency is too	Check whether the host computer fre- quently modifies the parameters (modi- fication frequency allowed of function code: 6 hours/150 times	(1) During machine adjustment, A91 warning (6 hours/150 times) caused by manual frequent modifica- tion of function codes can be cleared through P10-03. In other cases, please check the PLC program
high	Note: 32-bit function code: recorded as 2 times)	(2) If A91 warning appears in the normal working mode of the machine, please check whether the PLC program frequently modifies the function code.
		(3) When the function code needs to be modified fre- quently, it is recommended to close Modbus write to EEPROM (P12-4 is set to 0)
external	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference
interfer- ence	Check whether there are sources of in- terference such as power supply in- verter equipment nearby	Separate strong and weak power as much as possi- ble, with good ground contact between motor and servo drive, and keep away from power cable wiring.

external interfer- ence	Increase the abnormal threshold setting of P0-31 encoder read-write check.	Eliminate the A93 warning by increasing the exception threshold is suitable as a temporary solution. The dis- advantage is that the motor may run in an unstable state.
Encoder fault	Manually rotate the motor shaft counter- clockwise or clockwise to observe whether the monitoring quantity U0-30 (electrical angle) changes regularly	If the value of U0-30 (electrical angle) changes abruptly or does not change, the encoder itself may have problems, please replace the motor or encoder.
Servo drive fault	•Cross-verification. Use the normal mo- tor, encoder cable to connect to the servo drive. If the servo drive still have alarm, it is servo fault.	Servo driver may be damaged, please contact the manufacturer's technician.

A-92 Low encoder battery voltage warning

Fault

Servo drive panel display	Fault name
A-92	Low encoder battery voltage warning

Troubleshooting

Reason	Troubleshooting methods	Handling
The encoder battery voltage is less than 3.1V	Measure the encoder battery voltage	Contact technician to replace a new encoder battery

A-93 Abnormal and frequency of encoder read and write check is too high

Fault

Servo drive panel display	Fault name
A-93	The abnormal frequency of encoder read-write verification is too high

Troubleshooting

Reason	Troubleshooting methods	Handling
External interference	Check for strong magnetic fields nearby	Eliminate nearby strong magnetic interference

Check whether there are sources of inter-

ference such as power supply inverter equipment nearby	Separate strong and weak power as much as possible, with good ground contact be- tween motor and servo drive, and keep away from power cable wiring.	
Increase the abnormal threshold setting of P0-31.	This method is suitable as a temporary workaround to eliminate the A93 warning. It may cause an unstable state in the opera- tion of the motor.	
Encoder issue	Manually rotate the motor shaft slowly, and observe the changes of the monitoring quantity U0-30 (electrical angle).	If the value of U0-30 (electrical angle) changes suddenly or does not change, it may be a problem with the en- coder, please replace the mo- tor or encoder.
Internal servo drive fault	Cross-verification. Use the normal motor, encoder cable to connect to the servo drive, only connect the encoder cable. If the servo drive still alarm, it is failure.	Contact techni- cian for repair

11 Appendix

Lists of parameters

In order to facilitate your use, the VD2SA series provides monitoring display and setting display functions. The specification are as follows.

Number	Parameter group name	Parameter group	Range
1	Basic settings	Group P00	P00-01 to P00-30
2	Control parameters	Group P01	P01-01 to P01-33
3	Gain adjustment	Group P02	P02-01 to P02-12
4	Self-adjustment parameters	Group P03	P03-01 to P03-08
5	Vibration suppression	Group P04	P04-01 to P04-10
6	Signal input and output	Group P05	P05-01 to P05-21
7	DI / DO configuration	Group P06	P06-02 to P06-33
8	Multi-segment position	Group P07	P07-01 to P07-72
9	Accessibility	Group P10	P10-01 to P10-06
10	Communication parameters	Group P12	P12-01 to P12-05
11	Communication input and output	Group P13	P13-01 to P13-14
12	Universal	Group U0	U0-01 to U0-56
13	Warning	Group U1	U1-01 to U1-25
14	Device	Group U2	U2-01 to U2-16

Comments about the contents of the parameter table

Parameter name

- If a parameter name is "reserved", it is occupied by system. Please do not configure the parameter.
- If a parameter name is "not supported", in means that the model does not support the parameter. For the difference of servo drive parameters of different models, please refer to the parameter table.

Parameter unit

• If a parameter unit is "-", it has no unit.

The time when the modification takes effect

• Some of parameters need to be power on again to take effect. Please refer to the parameter table.

The following parameter table is described in terms of VD2-014SA1G model V1.13 firmware version. Some of the parameters are different from the old version.

Group P00 Basic settings

							Modbus address		
Funct ion code	Name	Setting metho d	Effective time	De fau It	Rang e	Un – it	Hexadecimal r	D e ci m al	Data type
<u>P00-</u> <u>01</u>	Control mode	Shutdo wn setting	Effective immedi- ately	1	1 to 6	-	0x0001	1	16-bit
<u>P00-</u> <u>04</u>	Rotation direction	Shutdo wn setting	Effective immedi- ately	0	0 to 1	-	0x0004	4	16-bit
<u>P00-</u> <u>05</u>	Servo OFF shutdown mode	Shutdo wn setting	Effective immedi- ately	0	0 to 1	-	0x0005	5	16-bit
<u>P00-</u> <u>09</u>	Braking re- sistance setting	Operati on setting	Effective immedi- ately	0	0 to 3	-	0x0009	9	16-bit
<u>P00-</u> <u>10</u>	External braking re- sistor resistance	Operati on setting	Effective immedi- ately	50	0 to 6553 5	Ω	0x000A	1 0	16-bit
<u>P00-</u> <u>11</u>	External braking re- sistor power	Operati on setting	Effective immedi- ately	10 0	0 to 6553 5	W	0x000B	1 1	16-bit
<u>P00-</u> <u>12</u>	Position pulse type selection	Operati on setting	Power-on again	0	0 to 5	-	0×000C	1 2	16-bit
	Maximum 	Shutdo	Effective	~~				4	

<u>P00-</u> <u>13</u>	Maximum position pulse frequency	Shut- down setting	Effective immedi- ately	30 0	1 to 500	kH z	0x000D	1 3	16-bit
<u>P00-</u> <u>14</u>	Position pulse anti- interference grade	Operati on setting	Power-on again	2	0 to 9	-	0x000E	1 4	16-bit
<u>P00-</u> <u>16</u>	Number of instruction pulses when the motor ro- tates one circle	Shutdo wn setting	Effective immedi- ately	10 00 0	0 to 1310 72	Ins tru cti on pul se uni t	0x0010	1 6	32-bit
<u>P00-</u> <u>17</u>	Electronic gear 1 numerator	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0012	1 8	32-bit
<u>P00-</u> <u>18</u>	Electronic gear 1 denomina- tor	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0014	2 0	32-bit
<u>P00-</u> <u>19</u>	Electronic Gear 2 nominator	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0016	2 2	32-bit
<u>P00-</u> <u>20</u>	Electronic gear 2 denomina- tor	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0018	2 4	32-bit
<u>P00-</u> <u>21</u>	Pulse fre- quency divi- sion output direction	Operati on setting	Power-on again	0	0 to 1	-	0x001A	2 6	16-bit
<u>P00-</u> 22	Number of output pulses when the motor ro- tates one								

11 Appendix

							Modbus address		
Funct ion code	Name	Setting metho d	Effective time	De fau It	Rang e	Un – it		D e ci m al	Data type
<u>P00-</u> <u>01</u>	Control mode	Shutdo wn setting	Effective immedi- ately	1	1 to 6	-	0x0001	1	16-bit
<u>P00-</u> <u>04</u>	Rotation direction	Shutdo wn setting	Effective immedi- ately	0	0 to 1	-	0x0004	4	16-bit
<u>P00-</u> <u>05</u>	Servo OFF shutdown mode	Shutdo wn setting	Effective immedi- ately	0	0 to 1	-	0x0005	5	16-bit
<u>P00-</u> <u>09</u>	Braking re- sistance setting	Operati on setting	Effective immedi- ately	0	0 to 3	-	0x0009	9	16-bit
<u>P00-</u> <u>10</u>	External braking re- sistor resistance	Operati on setting	Effective immedi- ately	50	0 to 6553 5	Ω	0x000A	1 0	16-bit
<u>P00-</u> <u>11</u>	External braking re- sistor power	Operati on setting	Effective immedi- ately	10 0	0 to 6553 5	W	0x000B	1 1	16-bit
<u>P00-</u> <u>12</u>	Position pulse type selection	Operati on setting	Power-on again	0	0 to 5	-	0x000C	1 2	16-bit
<u>P00-</u> <u>13</u>	Maximum position pulse frequency	Shutdo wn setting	Effective immedi- ately	30 0	1 to 500	kH z	0x000D	1 3	16-bit
<u>P00-</u> <u>14</u>	Position pulse anti- interference grade	Operati on setting	Power-on again	2	0 to 9	-	0x000E	1 4	16-bit

<u>P00-</u> <u>16</u>	Number of instruction pulses when the motor ro- tates one circle	Shut- down setting	Effective immedi- ately	10 00 0	0 to 1310 72	Ins tru cti on pul se uni t	0x0010	1 6	32-bit
<u>P00-</u> <u>17</u>	Electronic gear 1 numerator	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0012	1 8	32-bit
<u>P00-</u> <u>18</u>	Electronic gear 1 denomina- tor	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0014	2 0	32-bit
<u>P00-</u> <u>19</u>	Electronic Gear 2 nominator	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0016	2 2	32-bit
<u>P00-</u> 20	Electronic gear 2 denomina- tor	Operati on setting	Effective immedi- ately	1	1 to 4294 9672 94	-	0x0018	2 4	32-bit
<u>P00-</u> 21	Pulse fre- quency divi- sion output direction	Operati on setting	Power-on again	0	0 to 1	-	0x001A	2 6	16-bit
<u>P00-</u> 22	Number of output pulses when the motor ro- tates one circle	Operati on setting	Power-on again	25 00	0 to 2500	Pul se uni t	0x001B	2 7	16-bit
<u>P00-</u> <u>23</u>	Z pulse out- put OZ polarity	Operati on setting	Power-on again	0	0 to 1	-	0x001C	2 8	16-bit
Doo	Position de-	Shutdo wn	Effective immedi-	60 იი	0 to 2147	Eq uiv ale nt	0x001F	3	32-hit

<u>25</u>	Position de- viation limit	Shut- down setting	Effective immedi- ately	60 00 0	0 to 2147 4836 46	Eq uiv ale nt pul se uni t		0x001E	3 0	32-bit
<u>P00-</u> <u>27</u>	Pulse out- put fre- quency divi- sion numerator	Operati on setting	Power-on again	1	1 to 2500	-		0x0021	3 3	16-bit
<u>P00-</u> <u>28</u>	Pulse out- put fre- quency divi- sion denomina- tor	Operati on setting	Power-on again	1	1 to 2500	-		0x0022	3 4	16-bit
<u>P00-</u> 29	Number of equivalent position unit in a circle	Shutdo wn setting	Effective immedi- ately	10 00 0	0 to 1310 72	-		0x0023	3 5	32-bit
<u>P00-</u> <u>30</u>	Shield multi-turn absolute encoder battery fault	Operati on setting	Power-on again	0	0 to 1			0x0025	3 7	16-bit
<u>P00-</u> <u>31</u>	Encoder read-write verification exception threshold setting	Operati on setting	Effective immedi- ately	20	0 to 100	-	0x0026		3 8	16-bit

Group P01 Control parameter

							Mod addr		
Functio n code	Name	Setting method	Effective time	Defa ult	Range	Unit	Hex adec imal	De ci ma I	Data type
<u>P01-01</u>	Speed instruc- tion source	Shutdown setting	Effective immediately	0	0 to 1	-	0x01 01	257	16-bit
<u>P01-02</u>	Internal speed instruction 0	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 02	258	16-bit
<u>P01-03</u>	Acceleration time	Operation setting	Effective immediately	50	0 to 65535	ms	0x01 03	259	16-bit
<u>P01-04</u>	Deceleration time	Operation setting	Effective immediately	50	0 to 65535	ms	0x01 04	260	16-bit
<u>P01-05</u>	Shutdown de- celeration time	Shutdown setting	Effective immediately	50	0 to 65535	ms	0x01 05	261	16-bit
<u>P01-06</u>	Position in- struction source	Operation setting	Effective immediately	0	0 to 1	-	0x01 06	262	16-bit
<u>P01-07</u>	Torque instruc- tion source	Shutdown setting	Effective immediately	0	0 to 1	-	0x01 07	263	16-bit
<u>P01-08</u>	Torque instruc- tion keyboard setting value	Operation setting	Effective immediately	0	-3000 to 3000	0.1%	0x01 08	264	16-bit
<u>P01-09</u>	Source of speed limit in torque mode	Shutdown setting	Effective immediately	0	0 to 1	-	0x01 09	265	16-bit
<u>P01-10</u>	Maximum speed threshold	Operation setting	Effective immediately	3600	0 to 5000	rpm	0x01 0A	266	16-bit
<u>P01-11</u>	Warning speed threshold	Operation setting	Effective immediately	3300	0 to 5000	rpm	0x01 0B	267	16-bit
<u>P01-12</u>	Forward speed threshold	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x01 0C	268	16-bit
<u>P01-13</u>	Reverse speed threshold	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x01 0D	269	16-bit

<u>P01-14</u>	Torque limit source	Shutdown setting	Effective immediately	0	0 to 1	-	0x01 0E	270	16-bit
<u>P01-15</u>	Forward torque limit	Operation setting	Effective immediately	3000	0 to 3000	0.1%	0x01 0F	271	16-bit
<u>P01-16</u>	Reverse torque limit	Operation setting	Effective immediately	3000	0 to 3000	0.1%	0x01 10	272	16-bit
<u>P01-17</u>	Forward speed limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x01 11	273	16-bit
<u>P01-18</u>	Reverse speed limit in torque mode	Operation setting	Effective immediately	3000	0 to 5000	rpm	0x01 12	274	16-bit
<u>P01-19</u>	Torque satura- tion timeout period	Operation setting	Effective immediately	1000	0 to 65535	ms	0x01 13	275	16-bit
<u>P01-21</u>	Zero-speed clamp function selection	Operation setting	Effective immediately	3000	0 to 3	rpm	0x01 12	274	16-bit
<u>P01-22</u>	Zero speed clamp speed threshold	Operation setting	Effective immediately	1000	0 to 5000	ms	0x01 13	275	16-bit
<u>P01-23</u>	Internal speed instruction 1	Operation setting	Effective immediately	0	0 to 3	-	0x01 15	277	16-bit
<u>P01-24</u>	Internal speed instruction 2	Operation setting	Effective immediately	0	0 to 5000	rpm	0x01 16	278	16-bit
<u>P01-25</u>	Internal speed instruction 3	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 17	279	16-bit
<u>P01-26</u>	Internal speed instruction 4	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 18	280	16-bit
<u>P01-27</u>	Internal speed instruction 5	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 19	281	16-bit
<u>P01-28</u>	Internal speed instruction 6	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 1A	282	16-bit
<u>P01-29</u>	Internal speed instruction 7	Operation setting	Effective immediately	0	-5000 to 5000	rpm	0x01 1B	283	16-bit
	Delay from				0 to 500	ms			

<u>P01-30</u>	Delay from brake output ON to instruc- tion reception	Operation setting	Effective immediately	0	0 to 500	ms	0x01 1C	284	16-bit
<u>P01-31</u>	In the static state, delay from the brake output is OFF to the motor is not energized.	Operation setting	Effective immediately	0	1 to 1000	ms	0x01 1D	285	16-bit
<u>P01-32</u>	Rotation state, when the brake output is OFF, the speed threshold	Operation setting	Effective immediately	250	0 to 300 0	rpm	0x01 1E	286	16-bit
<u>P01-33</u>	Rotation sta- tus, delay from servo enable OFF to brake output OFF	Operation setting	Effective immediately	150	1 to 1000	ms	0x01 1F	287	16-bit

Group P02 Gain adjustment

Function code		Setting		Defe			Mod addı	Data	
	Name	method	Effective time	Defa ult	Range	Unit	Hex adec imal	Dec imal	type
<u>P02-01</u>	1st position loop gain	Operation setting	Effective immediately	400	0 to 6200	0.1Hz	0x02 01	513	16-bit
<u>P02-02</u>	1st speed loop gain	Operation setting	Effective immediately	65	0 to 35000	0.1Hz	0x02 02	514	16-bit
<u>P02-03</u>	1st speed loop integral time constant	Operation setting	Effective immediately	1000	100 to 65535	0.1m s	0x02 03	515	16-bit
<u>P02-04</u>	2nd position loop gain	Operation setting	Effective immediately	35	0 to 6200	0.1Hz	0x02 04	516	16-bit
<u>P02-05</u>	2nd speed loop gain	Operation setting	Effective immediately	65	0 to 35000	0.1Hz	0x02 05	517	16-bit
	2nd speed	Onaration	Effective		0 to	0.1m	იაია		

<u>P02-06</u>	2nd speed loop integral time constant	Operation setting	Effective immediately	1000	0 to 65535	0.1m s	0x02 06	518	16-bit
<u>P02-07</u>	2nd gain switching mode	Operation setting	Effective immediately	0	0 to 3	-	0x02 07	519	16-bit
<u>P02-09</u>	Speed feed- forward gain	Operation setting	Effective immediately	0	0 to 1000	0.1%	0x02 09	521	16-bit
<u>P02-10</u>	Speed feed- forward filter time constant	Operation setting	Effective immediately	50	0 to 10000	0.01 ms	0x02 0A	522	16-bit
<u>P02-11</u>	Torque feed- forward gain	Operation setting	Effective immediately	0	0 to 2000	0.1%	0x02 0B	523	16-bit
<u>P02-12</u>	Torque feed- forward filter time constant	Operation setting	Effective immediately	50	0 to 10000	0.01 ms	0x02 0C	524	16-bit
<u>P02-13</u>	Delay Time for Gain Switching	Operation setting	Effective immediately	20	0 to 10000	0.1m s	0x02 0D	525	16-bit
<u>P02-14</u>	Gain switch- ing grade	Operation setting	Effective immediately	50	0 to 20000		0x02 0E	526	16-bit
<u>P02-15</u>	Gain switch- ing hysteresis	Operation setting	Effective immediately	20	0 to 20000		0x02 0F	527	16-bit
<u>P02-16</u>	Position loop gain switching time	Operation setting	Effective immediately	30	0 to 10000	0.1m s	0x02 10	528	16-bit
<u>P02-20</u>	Enable model tracking con- trol function	Shutdown setting	Effective immediately	0	0 to 1		0x02 14	532	16-bit
<u>P02-21</u>	Model track- ing control gain	Shutdown setting	Effective immediately	1000	20 to 20000	0.1/s	0x02 15	533	16-bit
<u>P02-22</u>	Model track- ing control gain compensation	Shutdown setting	Effective immediately	1000	500 to 2000	0.10 %	0x02 16	534	16-bit

<u>P02-23</u>	Model track- ing control forward rota- tion bias	Shutdown setting	Effective immediately	1000	0 to 10000	0.10 %	0x02 17	535	16-bit
<u>P02-24</u>	Model track- ing control re- verses rota- tion bias	Shutdown setting	Effective immediately	1000	0 to 10000	0.10 %	0x02 18	536	16-bit

Group P03 Self-adjustment parameters

		Setting Effecti					Mod addr		
Functio n code	Name	Setting method	Effective time	Defau It	Range	Unit	Hex ade cim al	De ci ma I	Data type
<u>P03-01</u>	Load inertia ratio	Operation setting	Effective immediately	300	100 to 10000	0.01	0x0 301	76 9	16-bit
<u>P03-02</u>	Load rigidity grade selection	Operation setting	Effective immediately	14	0 to 31	-	0x0 302	77 0	16-bit
<u>P03-03</u>	Self-adjusting mode selection	Operation setting	Effective immediately	0	0 to 2	-	0x0 303	77 1	16-bit
<u>P03-04</u>	Online inertia recognition sensitivity	Operation setting	Effective immediately	0	0 to 2	-	0x0 304	77 2	16-bit
<u>P03-05</u>	Number of cycles of inertia identification	Shutdown setting	Effective immediately	2	1 to 20	Circle	0x0 305	77 3	16-bit
<u>P03-06</u>	Maximum speed of inertia identification	Shutdown setting	Effective immediately	1000	300 to 2000	rpm	0x0 306	77 4	16-bit
<u>P03-07</u>	Parameter identi- fication of rota- tion direction	Shutdown setting	Effective immediately	0	0 to 2	-	0x0 307	77 5	16-bit
<u>P03-08</u>	Parameter identi- fication waiting time	Shutdown setting	Effective immediately	1000	300 to 10000	ms	0x0 308	77 6	16-bit

Group P04 Vibration suppression

Functio n code	Name	Setting Effectiv method time			Range	Unit	Moc add		
			Effective time				Hex ade cim al	Deci mal	Data type
<u>P04-01</u>	Pulse instruc- tion filtering method	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 401	102 5	16-bit

<u>P04-02</u>	Position in- struction first- order low-pass filtering time constant	Shutdown setting	Effective immediately	0	0 to 1000	ms	0x0 402	102 6	16-bit
<u>P04-03</u>	Position in- struction aver- age filter time constant	Shutdown setting	Effective immediately	0	0 to 128	ms	0x0 403	102 7	16-bit
<u>P04-04</u>	Torque filter time constant	Operation setting	Effective immediately	50	10 to 2500	0.01m s	0x0 404	102 8	16-bit
<u>P04-05</u>	1st notch filter frequency	Operation setting	Effective immediately	300	250 to 5000	Hz	0x0 405	102 9	16-bit
<u>P04-06</u>	1st notch filter depth	Operation setting	Effective immediately	100	0 to 100	-	0x0 406	103 0	16-bit
<u>P04-07</u>	1st notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x0 407	103 1	16-bit
<u>P04-08</u>	2nd notch filter frequency	Operation setting	Effective immediately	500	250 to 5000	Hz	0x0 408	103 2	16-bit
<u>P04-09</u>	2nd notch filter depth	Operation setting	Effective immediately	100	0 to 100	-	0x0 409	103 3	16-bit
<u>P04-10</u>	2nd notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x0 40A	103 4	16-bit
<u>P04-10</u>	2nd notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x0 40A	103 4	16-bit
<u>P04-10</u>	2nd notch filter width	Operation setting	Effective immediately	4	0 to 12	-	0x0 40A	103 4	16-bit
<u>P04-11</u>	Enable low-fre- quency vibra- tion suppres- sion function	Operation setting	Effective immediately	4	0 to 1	-	0x0 40B	103 5	16-bit
<u>P04-12</u>	Low-frequency vibration sup- pression frequency	Operation setting	Effective immediately	800	10 to 2000	0.1HZ	0x0 40C	103 6	16-bit
<u>P04-14</u>	Shutdown vi- bration detec- tion amplitude	Operation setting	Effective immediately	100	0 to 3000	0.001	0x0 40E	103 8	16-bit

<u>P04-18</u>	Speed feed- back filtering time	Operation setting	Effective immediately	40	20 to 1000	0.01m s	0x0 412	104 2	16-bit
<u>P04-19</u>	Enable the type A suppression function	Operation setting	Effective immediately	0	0 to 1	-	0x0 413	104 3	16-bit
<u>P04-20</u>	Type A sup- pression frequency	Operation setting	Effective immediately	1000	100 to 20000	0.1HZ	0x0 414	104 4	16-bit
<u>P04-21</u>	Type A sup- pression gain correction	Operation setting	Effective immediately	100	0 to 1000	0.01	0x0 415	104 5	16-bit
<u>P04-22</u>	Type A sup- pression damp- ing gain	Operation setting	Effective immediately	0	0 to 500	0.01	0x0 416	104 6	16-bit
<u>P04-23</u>	Type A sup- pression phase correction	Operation setting	Effective immediately	200	0 to 900	0.1 de- gree	0x0 417	104 7	16-bit

Group P05 Signal input and output

Functio	Setting Name	Effective	Defa	a _		Moc add	lbus ress	Defe	
n code	Name	method	time	ult	Range	Unit	Hexa deci- mal	Deci mal	Data type
<u>P05-01</u>	AI_1 input bias	Operation setting	Effective immediately	0	-5000 to 5000	mV	0x05 01	1281	16-bit
<u>P05-02</u>	AI_1 input filter time constant	Operation setting	Effective immediately	200	0 to 60000	0.01 ms	0x05 02	1282	16-bit
<u>P05-03</u>	AI_1 dead zone	Operation setting	Effective immediately	20	0 to 1000	mV	0x05 03	1283	16-bit
<u>P05-04</u>	AI_1 zero drift	Operation setting	Effective immediately	0	-500 to 500	mV	0x05 04	1284	16-bit
<u>P05-05</u>	AI_2 input bias	Operation setting	Effective immediately	0	-5000 to 5000	mV	0x05 05	1285	16-bit
<u>P05-06</u>	AI_2 input filter time constant	Operation setting	Effective immediately	200	0 to 60000	0.01 ms	0x05 06	1286	16-bit

<u>P05-07</u>	AI_2 dead zone	Operation setting	Effective immediately	20	0 to 500	mV	0x05 07	1287	16-bit
<u>P05-08</u>	AI_2 zero drift	Operation setting	Effective immediately	0	-500 to 500	mV	0x05 08	1288	16-bit
<u>P05-09</u>	Analog quantity 10V for speed value	Shutdown setting	Effective immediately	3000	100 to 4500	rpm	0x05 09	1289	16-bit
<u>P05-10</u>	Analog quantity 10V for torque value	Shutdown setting	Effective immediately	1000	0 to 3000	0.1%	0x05 0A	1290	16-bit
<u>P05-11</u>	Positioning is completed, po- sitioning close condition setting	Operation setting	Effective immediately	0	0 to 3	-	0x05 0B	1291	16-bit
<u>P05-12</u>	Positioning completion threshold	Operation setting	Effective immediately	800	1 to 65535	Equiv alent pulse unit	0x05 0C	1292	16-bit
<u>P05-13</u>	Positioning ap- proach threshold	Operation setting	Effective immediately	5000	1 to 65535	Equiv alent pulse unit	0x05 0D	1293	16-bit
<u>P05-14</u>	Position detec- tion window time	Operation setting	Effective immediately	10	0 to 20000	ms	0x05 0E	1294	16-bit
<u>P05-15</u>	Positioning sig- nal hold time	Operation setting	Effective immediately	100	0 to 20000	ms	0x05 0F	1295	16-bit
<u>P05-16</u>	Rotation detec- tion speed threshold	Operation setting	Effective immediately	20	0 to 1000	rpm	0x05 10	1296	16-bit
<u>P05-17</u>	Speed consis- tent signal threshold	Operation setting	Effective immediately	10	0 to 100	rpm	0x05 11	1297	16-bit
<u>P05-18</u>	Speed ap- proach signal threshold	Operation setting	Effective immediately	100	10 to 6000	rpm	0x05 12	1298	16-bit
<u>P05-19</u>	Zero speed out- put signal threshold	Operation setting	Effective immediately	10	0 to 6000	rpm	0x05 13	1299	16-bit

<u>P05-20</u>	Torque arrival threshold	Operation setting	Effective immediately	100	0 to 300	%	0x05 14	1300	16-bit
<u>P05-21</u>	Torque arrival hysteresis value	Operation setting	Effective immediately	10	0 to 20	%	0x05 15	1301	16-bit

Group P06 DIDO configuration

Functio		Setting Effective		Defau	Range Unit			lbus ress	Data
n code	Name	method	time	lt	Range	Unit	Hex adec imal	Deci mal	type
<u>P06-02</u>	DI_1 channel func- tion selection	Operation setting	Power-on again	1	0 to 32	-	0x06 02	1538	16- bit
<u>P06-03</u>	DI_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 03	1539	16- bit
<u>P06-04</u>	DI_1 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 04	1540	16- bit
<u>P06-05</u>	DI_2 channel func- tion selection	Operation setting	Power-on again	2	0 to 32	-	0x06 05	1541	16- bit
<u>P06-06</u>	DI_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 06	1542	16- bit
<u>P06-07</u>	DI_2 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 07	1543	16- bit
<u>P06-08</u>	DI_3 channel func- tion selection	Operation setting	Power-on again	3	0 to 32	-	0x06 08	1544	16- bit
<u>P06-09</u>	DI_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 09	1545	16- bit
<u>P06-10</u>	DI_3 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 0A	1546	16- bit
<u>P06-11</u>	DI_4 channel func- tion selection	Operation setting	Power-on again	4	0 to 32	-	0x06 0B	1547	16- bit
<u>P06-12</u>	DI_4 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 0C	1548	16- bit
<u>P06-13</u>	DI_4 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 0D	1549	16- bit

<u>P06-14</u>	DI_5 channel func- tion selection	Operation setting	Power-on again	7	0 to 32	-	0x06 0E	1550	16- bit
<u>P06-15</u>	DI_5 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 0F	1551	16- bit
<u>P06-16</u>	DI_5 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 10	1552	16- bit
<u>P06-17</u>	DI_6 channel func- tion selection	Operation setting	Power-on again	11	0 to 32	-	0x06 11	1553	16- bit
<u>P06-18</u>	DI_6 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 12	1554	16- bit
<u>P06-19</u>	DI_6 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 13	1555	16- bit
<u>P06-20</u>	DI_7 channel func- tion selection	Operation setting	Power-on again	0	0 to 32	-	0x06 14	1556	16- bit
<u>P06-21</u>	DI_7 channel logic selection	Operation setting	Power-on again	0	0 to 1	-	0x06 15	1557	16- bit
<u>P06-22</u>	DI_7 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 16	1558	16- bit
<u>P06-23</u>	DI_8 channel func- tion selection	Operation setting	Power-on again	0	0 to 32	-	0x06 17	1559	16- bit
<u>P06-24</u>	DI_8 channel logic selection	Operation setting	Power-on again	0	0 to 1	-	0x06 18	1560	16- bit
<u>P06-25</u>	DI_8 input source selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 19	1561	16- bit
<u>P06-26</u>	DO_1 channel func- tion selection	Operation setting	Effective immediately	132	128 to 148	-	0x06 1A	1562	16- bit
<u>P06-27</u>	DO_1 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 1B	1563	16- bit
<u>P06-28</u>	DO_2 channel func- tion selection	Operation setting	Effective immediately	130	128 to 148	-	0x06 1C	1564	16- bit
<u>P06-29</u>	DO_2 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 1D	1565	16- bit
<u>P06-30</u>	DO_3 channel func- tion selection	Operation setting	Effective immediately	129	128 to 148	-	0x06 1E	1566	16- bit
	DO 2 abannal logia	Operation	Effective				0~06		16

<u>P06-31</u>	DO_3 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 1F	1567	16- bit
<u>P06-32</u>	DO_4 channel func- tion selection	Operation setting	Effective immediately	134	128 to 148	-	0x06 20	1568	16- bit
<u>P06-33</u>	DO_4 channel logic selection	Operation setting	Effective immediately	0	0 to 1	-	0x06 21	1569	16- bit

Group P07 multi-segment position

Functio n code	Name	Setting method	Effective time	Defa ult	Range	Unit	Modbus address		
							Hex ade cim al	De ci ma I	Data type
<u>P07-01</u>	multi-segment po- sition operation mode	Shutdown setting	Effective immediately	0	0 to 2	-	0x0 701	17 93	16-bit
<u>P07-02</u>	Starting position number	Shutdown setting	Effective immediately	1	1 to 16	-	0x0 702	17 94	16-bit
<u>P07-03</u>	End position number	Shutdown setting	Effective immediately	1	1 to 16	-	0x0 703	17 95	16-bit
<u>P07-04</u>	Margin processing method	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 704	17 96	16-bit
<u>P07-05</u>	Displacement in- struction type	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 705	17 97	16-bit
<u>P07-06</u>	Waiting time unit	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 706	17 98	16-bit
P07-07	Reserved	Shutdown setting	Effective immediately	0	0 to 63355	-	0x0 707	17 99	16-bit
P07-08	Reserved	Shutdown setting	Effective immediately	0	0 to 0	-	0x0 708	18 00	16-bit
<u>P07-09</u>	The 1st position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	_	0x0 709	18 01	32-bit

<u>P07-10</u>	Maximum speed of the 1st position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 70B	18 03	16-bit
<u>P07-11</u>	Acceleration and deceleration time of the 1st position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 70C	18 04	16-bit
<u>P07-12</u>	Waiting time after completion of the 1st position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 70D	18 05	16-bit
<u>P07-13</u>	The 2nd position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 70E	18 06	32-bit
<u>P07-14</u>	Maximum speed of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 710	18 08	16-bit
<u>P07-15</u>	Acceleration and deceleration time of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 711	18 09	16-bit
<u>P07-16</u>	Waiting time after completion of the 2nd position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 712	18 10	16-bit
<u>P07-17</u>	The 3rd position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 713	18 11	32-bit
<u>P07-18</u>	Maximum speed of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 715	18 13	16-bit
<u>P07-19</u>	Acceleration and deceleration time of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 716	18 14	16-bit
	Waiting time after	Oneration	F ffeetive		4 +	Set	0.20	40	

<u>P07-20</u>	Waiting time after completion of the 3rd position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 717	18 15	16-bit
<u>P07-21</u>	The 4th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 718	18 16	32-bit
<u>P07-22</u>	Maximum speed of the 4th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 71A	18 18	16-bit
<u>P07-23</u>	Acceleration and deceleration time of the 4th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 71B	18 19	16-bit
<u>P07-24</u>	Waiting time after completion of the 4th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 71C	18 20	16-bit
<u>P07-25</u>	The 5th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 71D	18 21	32-bit
<u>P07-26</u>	Maximum speed of the 5th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 71F	18 23	16-bit
<u>P07-27</u>	Acceleration and deceleration time of the 5th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 720	18 24	16-bit
<u>P07-28</u>	Waiting time after completion of the 5th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 721	18 25	16-bit
<u>P07-29</u>	The 6th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	_	0x0 722	18 26	32-bit

<u>P07-30</u>	Maximum speed of the 6th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 724	18 28	16-bit
<u>P07-31</u>	Acceleration and deceleration time of the 6th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 725	18 29	16-bit
<u>P07-32</u>	Waiting time after completion of the 6th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 726	18 30	16-bit
<u>P07-33</u>	The 7th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 727	18 31	32-bit
<u>P07-34</u>	Maximum speed of the 7th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 729	18 33	16-bit
<u>P07-35</u>	Acceleration and deceleration time of the 7th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 72A	18 34	16-bit
<u>P07-36</u>	Waiting time after completion of the 7th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 72B	18 35	16-bit
<u>P07-37</u>	The 8th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 72C	18 36	32-bit
<u>P07-38</u>	Maximum speed of the 8th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 72E	18 38	16-bit
<u>P07-39</u>	Acceleration and deceleration time of the 8th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 72F	18 39	16-bit
	Waiting time after	Oneration	F ffective		4 +~	Set	0.20	40	

<u>P07-40</u>	Waiting time after completion of the 8th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 730	18 40	16-bit
<u>P07-41</u>	The 9th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 731	18 41	32-bit
<u>P07-42</u>	Maximum speed of the 9th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 733	18 43	16-bit
<u>P07-43</u>	Acceleration and deceleration time of the 9th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 734	18 44	16-bit
<u>P07-44</u>	Waiting time after completion of the 9th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 735	18 45	16-bit
<u>P07-45</u>	The 10th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 736	18 46	32-bit
<u>P07-46</u>	Maximum speed of the 10th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 738	18 48	16-bit
<u>P07-47</u>	Acceleration and deceleration time of the 10th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 739	18 49	16-bit
<u>P07-48</u>	Waiting time after completion of the 10th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 73A	18 50	16-bit
					-214748 3647 to		0x0	18	

<u>P07-50</u>	Maximum speed of the 11th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 73D	18 53	16-bit
<u>P07-51</u>	Acceleration and deceleration time of the 11th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 73E	18 54	16-bit
<u>P07-52</u>	Waiting time after completion of the 11th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 73F	18 55	16-bit
<u>P07-53</u>	The 12th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 740	18 56	32-bit
<u>P07-54</u>	Maximum speed of the 12th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 742	18 58	16-bit
<u>P07-55</u>	Acceleration and deceleration time of the 12th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 743	18 59	16-bit
<u>P07-56</u>	Waiting time after completion of the 12th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 744	18 60	16-bit
<u>P07-57</u>	The 13th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 745	18 61	32-bit
<u>P07-58</u>	Maximum speed of the 13th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 747	18 63	16-bit
<u>P07-59</u>	Acceleration and deceleration time of the 13th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 748	18 64	16-bit
	Waiting time after	Oneration	F ffective		4 +0	Set	0~0	40	

<u>P07-60</u>	Waiting time after completion of the 13th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 749	18 65	16-bit
<u>P07-61</u>	The 14th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 74A	18 66	32-bit
<u>P07-62</u>	Maximum speed of the 14th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 74C	18 68	16-bit
<u>P07-63</u>	Acceleration and deceleration time of the 14th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 74D	18 69	16-bit
<u>P07-64</u>	Waiting time after completion of the 14th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 74E	18 70	16-bit
<u>P07-65</u>	The 15th position displacement	Operation setting	Effective immediately	1000 0	-214748 3647 to 214748 3646	-	0x0 74F	18 71	32-bit
<u>P07-66</u>	Maximum speed of the 15th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 751	18 73	16-bit
<u>P07-67</u>	Acceleration and deceleration time of the 15th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 752	18 74	16-bit
<u>P07-68</u>	Waiting time after completion of the 15th position	Operation setting	Effective immediately	100	1 to 65535	Set by P07-	0x0 753	18 75	16-bit
	displacement					06			

<u>P07-70</u>	Maximum speed of the 16th position displacement	Operation setting	Effective immediately	100	1 to 5000	rpm	0x0 756	18 78	16-bit
<u>P07-71</u>	Acceleration and deceleration time of the 16th position displacement	Operation setting	Effective immediately	100	1 to 65535	ms	0x0 757	18 79	16-bit
<u>P07-72</u>	Waiting time after completion of the 16th position displacement	Operation setting	Effective immediately	100	1 to 65535	Set by P07- 06	0x0 758	18 80	16-bit

Group P10 Accessibility

							Mod addi		
Functio n code	Name	Setting method	Effective time	Defa ult	Range	Unit	Hex ade cim al	De cim al	Data type
<u>P10-01</u>	JOG speed	Operation setting	Effective immediately	100	0 to 3000	rpm	0x0 A01	256 1	16-bit
<u>P10-02</u>	Restore factory settings	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 A02	256 2	16-bit
<u>P10-03</u>	Fault clearing	Operation setting	Effective immediately	0	0 to 1	-	0x0 A03	256 3	16-bit
<u>P10-04</u>	Motor overload protection time factor	Operation setting	Effective immediately	100	0 to 800	%	0x0 A04	256 4	16-bit
<u>P10-05</u>	Motor model	Operation setting	Power-on again	0	0 to 65535	-	0x0 A05	256 5	16-bit
<u>P10-06</u>	Multi-turn abso- lute encoder reset	Shutdown setting	Effective immediately	0	0 to 1	-	0x0 A06	256 6	16-bit
<u>P10-07</u>	Set machine code manually	Operation setting	Power-on again	0	0 to 1	-	0x0 A07	256 7	16-bit
<u>P10-08</u>	Multi-turn abso- lute encoder ori- gin offset								

366 / 402

6 (256 8	0x0 A08	-	-214748 3647 to 2147483 646	0	Effective immediately	Operation setting	compensation	
-----	----------	------------	---	--------------------------------------	---	--------------------------	----------------------	--------------	--

Group P12 Communication parameters

							Mod addr		
Functio n code	Name	Setting method	Effective time	Defa ult	Range	Unit	Hex ade cim al	De ci ma I	Data type
<u>P12-01</u>	Servo address	Operation setting	Effective immediately	1	1 to 247	-	0x0 C01	30 73	16-bit
<u>P12-02</u>	Baud rate	Operation setting	Effective immediately	2	0 to 5	-	0x0 C02	30 74	16-bit
<u>P12-03</u>	Serial data format	Operation setting	Effective immediately	0	0 to 3	-	0x0 C03	30 75	16-bit
<u>P12-04</u>	Modbus communi- cation data is writ- ten into EEPROM	Operation setting	Effective immediately	0	0 to 1	-	0x0 C04	30 76	16-bit
<u>P12-05</u>	RS422/RS485 function selection	Operation setting	Effective immediately	0	0 to 1	-	0x0 C05	30 77	16-bit
<u>P12-06</u>	Modbus 32-bit vari- able high and low byte order	Operation setting	Effective immediately	0	0 to 1		0x0 C06	30 78	16-bit

Group P13 Virtual input terminal

					Modi addr				
Functio n code	Name	Setting method	Effective time	Defa ult	Range	Unit	Hex adec imal	De ci ma I	Data type
<u>P13-01</u>	Virtual VDI_1 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D01	332 9	16-bit

P13-02 Virtual VDI_2

	input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D02	333 0	16-bit
<u>P13-03</u>	Virtual VDI_3 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D03	333 1	16-bit
<u>P13-04</u>	Virtual VDI_4 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D04	333 2	16-bit
<u>P13-05</u>	Virtual VDI_5 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D05	333 3	16-bit
<u>P13-06</u>	Virtual VDI_6 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D06	333 4	16-bit
<u>P13-07</u>	Virtual VDI_7 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D07	333 5	16-bit
<u>P13-08</u>	Virtual VDI_8 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D08	333 6	16-bit
<u>P13-11</u>	Virtual VDO_1 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D0B	333 9	16-bit
<u>P13-12</u>	Virtual VDO_2 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D0C	334 0	16-bit
<u>P13-13</u>	Virtual VDO_3 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D0D	334 1	16-bit
<u>P13-14</u>	Virtual VDO_4 input value	Operation setting	Effective immediately	0	0 to 1	-	0x0 D0E	334 2	16-bit

DI/DO channel function definition

DI channel function definition									
Number	Name	Function name	Content						
0		Off (not used)	-						
			Invalid DI port logic: Servo motor enable prohibited						
1	S-ON	Servo enable	Valid DI port logic: Servo motor is enabled						
2	A-CLR	Fault and warning clear	Invalid DI port logic: No reset fault or warning						
			Valid DI port logic: Reset fault or						

			warning
3	POT	Forward drive prohibition	Invalid DI port logic: Forward drive allowed Valid DI port logic: Forward drive Prohibited
4	NOT	Reverse drive prohibition	Invalid DI port logic: Reverse drive allowed Valid DI port logic: Reverse drive Prohibited
5	ZCLAMP	Zero-speed clamp	Invalid DI port logic: Zero-speed clamp prohibited Valid DI port logic: Zero-speed clamp enabled
6	CL	Clear deviation counter	Invalid DI port logic: Position devia- tion is not clear Valid DI port logic: Position devia- tion is clear
7	C-SIGN	Instruction is reversed	Invalid DI port logic: default instruc- tion direction Valid DI port logic: Reverse direc- tion of instruction
8	E-STOP	Emergency stop	Invalid DI port logic: Position lock after zero speed stop Valid DI port logic: Current running status is not affected
9	GEAR-SEL	Electronic Gear Switch 1	Invalid DI port logic: electronic Gear Switch 1 Valid DI port logic: electronic Gear Switch 2
10	GAIN-SEL	Gain switch	-
11	INH	Instruction pulse input prohibited	Invalid DI port logic: Instruction pulse input allowed Valid DI port logic: Instruction pulse input prohibited

12	VSSEL	Vibration control input switching	-
13	INSPD1	Internal speed instruction selec- tion 1	Constitutes an internal multi-seg- ment speed running segment number
14	INSPD2	Internal speed instruction selec- tion 2	Constitutes an internal multi-seg- ment speed running segment number
15	INSPD3	Internal speed instruction selec- tion 3	Constitutes an internal multi-seg- ment speed running segment number
16	J-SEL	Inertia ratio switch (not implemented yet)	-
17	MixModeSel	MixModeSel Mix mode selection	Invalid DI port logic: Current run- ning is not affected Valid DI port logic: Servo motor is in mix control mode
18	None	None	-
19	None	None	-
20	ENINPOS	Internal multi-segment enable signal	Invalid DI port logic: Current run- ning is not affected Valid DI port logic: Servo motor runs multi-segment position
21	INPOS1	Internal multi-segment position se- lection 1	Constitutes an internal multi-seg- ment position running segment number
22	INPOS2	Internal multi-segment position se- lection 2	Constitutes an internal multi-seg- ment position running segment number
23	INPOS3	Internal multi-segment position se- lection 3	Constitutes an internal multi-seg- ment position running segment number

DI channel function definition

Number	Na me	Function name	Content
128		OFF (not used)	-
129	RD Y	Servo is ready	Servo is ready, and could receive S-ON signal. 1. Invalid DO port logic: Servo is not ready 2. Valid DO port logic: Servo is ready
130	AL M	Fault signal	Valid when the fault is detected
131	WA RN	Warning signal	Valid when warning signals are output
132	TG ON	Rotation detection	 When the absolute value of servo motor speed is higher than P05-16 set value: Invalid DO port logic: invalid motor rotation detection signal Valid DO port logic: valid motor rotation detection signal
133	ZS P	Zero speed signal	 The signal output by the servo motor when it stops: Invalid DO port logic: invalid motor zero-speed signal Valid DO port logic: valid motor zero-speed signal
134	P- COI N	Positioning complete	Output this signal indicates that the servo drive positioning is complete
135	P- NE AR	Positioning approach	Output this signal indicates that the servo drive positioning is approach

136	V- COI N	Consistent speed	In speed mode, when the absolute value of the difference between motor speed and speed instruction is less than the set value of P05-17, the signal is valid
137	V- NE AR	Speed approach	 Invalid DO port logic: The absolute value of motor speed feedback after filtering is greater than the set value of P05-18 Valid DO port logic: The absolute value of motor speed feedback after filtering is less than the set value of P05-18
138	T- COI N	Torque arrival	 Invalid DO port logic: The absolute value of torque instruction is smaller than the set value. Valid DO port logic: The absolute value of torque instruction reaches the set value.
			The confirmation signal of torque limit.
139	T- LIM IT	Torque limit	 Invalid DO port logic: The torque of motor is not limited Valid DO port logic: The torque of motor is limited
			The confirmation signal of speed limit in torque mode.
140	V- LIM IT	Speed limited	 Invalid DO port logic: The motor speed is not limited Valid DO port logic: The motor speed is limited
			Output brake signal
141	BR K- OF F	Brake output	 Invalid DO port logic: The brake device does not operate Valid DO port logic: The brake de- vice operates
142	SR V- ST	Servo on state output	 Invalid DO port logic: Servo motor is not operate Valid DO port logic: Servo motor is in operation

143	VD2 A VD2 B	Non e	-	-
	VD2 F	OZ	Z pulse output	The output signal indicates that servo drive rotates 1 turn
144 145		Non e	-	-
		CO M_ VD O1	Communication VDO1 output	Use communication VDO
14	46	CO M_ VD O2	Communication VDO2 output	Use communication VDO
14	47	CO M_ VD O3	Communication VDO3 output	Use communication VDO
148		CO M_ VD O4	Communication VDO4 output	Use communication VDO

Group U0 Monitoring parameters

Fu nc tio n co de	Name	Category	Unit	Modbus ad Hexadecimal	ldress Decimal	Data type
<u>U0</u> <u>-0</u> <u>1</u>	Servo Status	Universal	-	0x1E01	7681	16-bit
<u>U0</u> <u>-0</u> <u>2</u>	Servo mo- tor speed	Universal	rpm	0x1E02	7682	16-bit
	Input					

<u>U0</u> <u>-0</u> <u>3</u>	Input speed instruction	Universal	rpm	0x1E03	7683	16-bit
<u>U0</u> <u>-0</u> <u>4</u>	Correspon ding speed of position instruction	Universal	rpm	0x1E04	7684	16-bit
<u>U0</u> <u>-0</u> <u>5</u>	Pulse deviation	Universal	Equivalent pulse unit	0x1E05	7685	32-bit
U0 -0 6	Reserved	Universal	-	0x1E07	7687	16-bit
U0 -0 7	Reserved	Universal	-	0x1E08	7688	16-bit
<u>U0</u> <u>-0</u> <u>8</u>	Input in- struction pulse frequency	Universal	kHz	0x1E09	7689	16-bit
<u>U0</u> <u>-0</u> <u>9</u>	Input in- struction pulse number (lower 32 bits)	Universal	Instruction unit	0x1E0A	7690	32-bit
U0 -1 0	Reserved	Universal	Instruction unit	0x1E0C	7692	16-bit
U0 -1 1	Reserved	Universal	Instruction unit	0x1E0D	7693	32-bit
<u>U0</u> -1 2	Real-time torque monitoring	Universal	0.1%	0x1E0F	7695	16-bit
	Encoder cumula- tive		Frankerit	0.4540	7606	20 k#

<u>-1</u> <u>3</u>	Encoder cumula- tive position (lower 32 bits)	Universal	Encoder unit	0x1E10	7696	32-bit
U0 -1 4	Reserved	Universal	Encoder unit	0x1E12	7698	16-bit
<u>U0</u> <u>-1</u> <u>5</u>	Encoder cumula- tive position (high 32 bits)	Universal	Encoder unit	0x1E13	7699	32-bit
U0 -1 6	Reserved	Universal	Encoder unit	0x1E15	7701	16-bit
<u>U0</u> <u>-1</u> Z	DI input signal status	Universal	-	0x1E16	7702	16-bit
U0 -1 8	Reserved	Universal	-	0x1E17	7703	16-bit
<u>U0</u> -1 <u>9</u>	DO output signal status	Universal	-	0x1E18	7704	16-bit
<u>U0</u> -2 0	Real-time load iner- tia ratio	Universal	%	0x1E19	7705	16-bit
<u>U0</u> -2 1	Al1 input voltage value	Universal	V	0x1E1A	7706	16-bit
1	Reserved *					
<u>U0</u> -2 2	Al2 input voltage value	Universal	V	0x1E1B	7707	16-bit

Res- erved*						
<u>U0-23</u>	Vibration Frequenc y	Universal	Hz	0x1E1C	7708	16- bit
<u>U0-24</u>	Vibration Amplitude	Universal	rpm	0x1E1D	7709	16- bit
<u>U0-25</u>	Forward torque limit value	Universal	%	0x1E1E	7710	16- bit
<u>U0-26</u>	Reverse torque limit value	Universal	%	0x1E1F	7711	16- bit
<u>U0-27</u>	Forward speed limit value	Universal	rpm	0x1E20	7712	16- bit
<u>U0-28</u>	Reverse speed limit value	Universal	rpm	0x1E21	7713	16- bit
<u>U0-29</u>	Mechanic al angle	Universal	o	0x1E22	7714	16- bit
<u>U0-30</u>	Electrical angle	Universal	٥	0x1E23	7715	16- bit
<u>U0-31</u>	Bus voltage	Universal	V	0x1E24	7716	16- bit
<u>U0-32</u>	Radiator tempera- ture	Universal	°C	0x1E25	7717	16- bit
<u>U0-33</u>	Instantane ous output power	Universal	W	0x1E26	7718	16- bit
<u>U0-34</u>	Average output power	Universal	W	0x1E27	7719	16- bit
<u>U0-35</u>	Total op- eration time (hour)	Universal	h	0x1E28	7720	16- bit

U0 -3 6	Reserved	Universal	-	0x1E29	7721	16-bit
<u>U0</u> <u>-3</u> <u>7</u>	Total op- eration time (minute)	Universal	min	0x1E2A	7722	16-bit
<u>U0</u> <u>-3</u> <u>8</u>	Total op- eration time (second)	Universal	S	0x1E2B	7723	16-bit
<u>U0</u> <u>-3</u> <u>9</u>	Load torque percent- age	Universal	%	0x1E2C	7724	16-bit
<u>U0</u> <u>-4</u> <u>0</u>	Current operation time (hour)	Universal	h	0x1E2D	7725	16-bit
U0 -4 1	Reserved	-	-	0x1E2E	7726	16-bit
<u>U0</u> <u>-4</u> <u>2</u>	Current operation time (minute)	Universal	min	0x1E2F	7727	16-bit
<u>U0</u> <u>-4</u> <u>3</u>	Current operation time (second)	Universal	S	0x1E30	7728	16-bit
<u>U0</u> <u>-4</u> <u>4</u>	Instantane ous brak- ing resis- tor power	Universal	W	0x1E31	7729	16-bit
U0 -4 5	Reserved	-	-	0x1E32	7730	16-bit
<u>U0</u> <u>-4</u> <u>6</u>	Average braking resistor					

	power	Universal	W	0x1E33	7731	16-bit
U0 -4 7	Reserved	Universal	-	0x1E34	7732	16-bit
<u>U0</u> <u>-4</u> <u>8</u>	Power-on times	Universal	Times	0x1E35	7733	16-bit
U0 -4 9	Reserved	-	-	0x1E36	7734	16-bit
<u>U0</u> -5 0	Motor cu- mulative number of turns (low 32 bits)	Universal	Circle	0x1E37	7735	32-bit
<u>U0</u> <u>-5</u> 1	Motor cu- mulative number of turns (high 32 bits)	Universal	Circle	0x1E39	7737	32-bit
U0 -5 2	Reserved	Universal	-	0x1E3B	7739	16-bit
<u>U0</u> <u>-5</u> <u>3</u>	Motor model code	Universal	-	0x1E3C	7740	16-bit
<u>U0</u> -5 4	Absolute encoder position in 1 circle	Universal	Encoder unit	0x1E3D	7741	32-bit
<u>U0</u> <u>-5</u> <u>5</u>	Circle numbers of multi- turn abso- lute encoder	Universal	Circle	0x1E3F	7743	16-bit
	Currant					

<u>U0</u> <u>-5</u>	Current position of multi-turn	Universal	Instruction unit	0x1E41	7745	32-bit
6	absolute	Onversar	mstruction unit	0.1241	1145	02-010
	encoder					

Group U1 Warning monitoring

Functio	Name	Category	Unit	Modbus address		Data tuno
n code	Name	Category	Unit	Hexadecimal	Decimal	Data type
<u>U1-01</u>	Current fault code	Warning	-	0x1F01	7937	16-bit
<u>U1-02</u>	Current warning code	Warning	-	0x1F02	7938	16-bit
<u>U1-03</u>	U phase current when faults occur	Warning	А	0x1F03	7939	16-bit
<u>U1-04</u>	V phase current when faults occur	Warning	А	0x1F04	7940	16-bit
<u>U1-05</u>	Bus voltage when faults occur	Warning	V	0x1F05	7941	16-bit
<u>U1-06</u>	IGBT temperature when faults occur	Warning	°C	0x1F06	7942	16-bit
<u>U1-07</u>	Torque component when faults occur	Warning	%	0x1F07	7943	16-bit
<u>U1-08</u>	Excitation component when faults occur	Warning	%	0x1F08	7944	16-bit
<u>U1-09</u>	Position deviation when faults occur	Warning	Encoder unit	0x1F09	7945	32-bit
<u>U1-10</u>	Speed value when faults occur	Warning	rpm	0x1F0B	7947	16-bit
<u>U1-11</u>	Time when the fault occurred	Warning	S	0x1F0C	7948	16-bit
<u>U1-12</u>	Number of faults in this operation	Warning	-	0x1F0D	7949	16-bit
<u>U1-13</u>	Number of warnings in this operation	Warning	-	0x1F0E	7950	16-bit
<u>U1-14</u>	Total number of historical faults	Warning	-	0x1F0F	7951	16-bit

<u>U1-15</u>	Total number of historical warnings	Warning	-	0x1F10	7952	16-bit
<u>U1-16</u>	The 1st fault code of the most recent	Warning	-	0x1F11	7953	16-bit
<u>U1-17</u>	The 2nd fault code of the most recent	Warning	-	0x1F12	7954	16-bit
<u>U1-18</u>	The 3rd fault code of the most recent	Warning	-	0x1F13	7955	16-bit
<u>U1-19</u>	The 4th fault code of the most recent	Warning	-	0x1F14	7956	16-bit
<u>U1-20</u>	The 5th fault code of the most recent	Warning	-	0x1F15	7957	16-bit
<u>U1-21</u>	The 1st warning code of the most recent	Warning	-	0x1F16	7958	16-bit
<u>U1-22</u>	The 2nd warning code of the most recent	Warning	-	0x1F17	7959	16-bit
<u>U1-23</u>	The 3rd warning code of the most recent	Warning	-	0x1F18	7960	16-bit
<u>U1-24</u>	The 4th warning code of the most recent	Warning	-	0x1F19	7961	16-bit
<u>U1-25</u>	The 5th warning code of the most recent	Warning	-	0x1F1A	7962	16-bit

Group U2 Device monitoring

Function code	Name	Cotomorri	l lm:4	Modbus address		Doto turno
Function code	Name	Category	Unit	Hexadecimal	Decimal	Data type
U2-01	Product Series	Device	-	0x2001	8193	16-bit
U2-02	Model	Device	-	0x2002	8194	16-bit
U2-03	Model	Device	-	0x2003	8195	16-bit
U2-04	Firmware version	Device	-	0x2004	8196	16-bit
U2-05	FPGA version	Device	-	0x2005	8197	16-bit
U2-06	Firmware day (year)	Device	-	0x2006	8198	16-bit

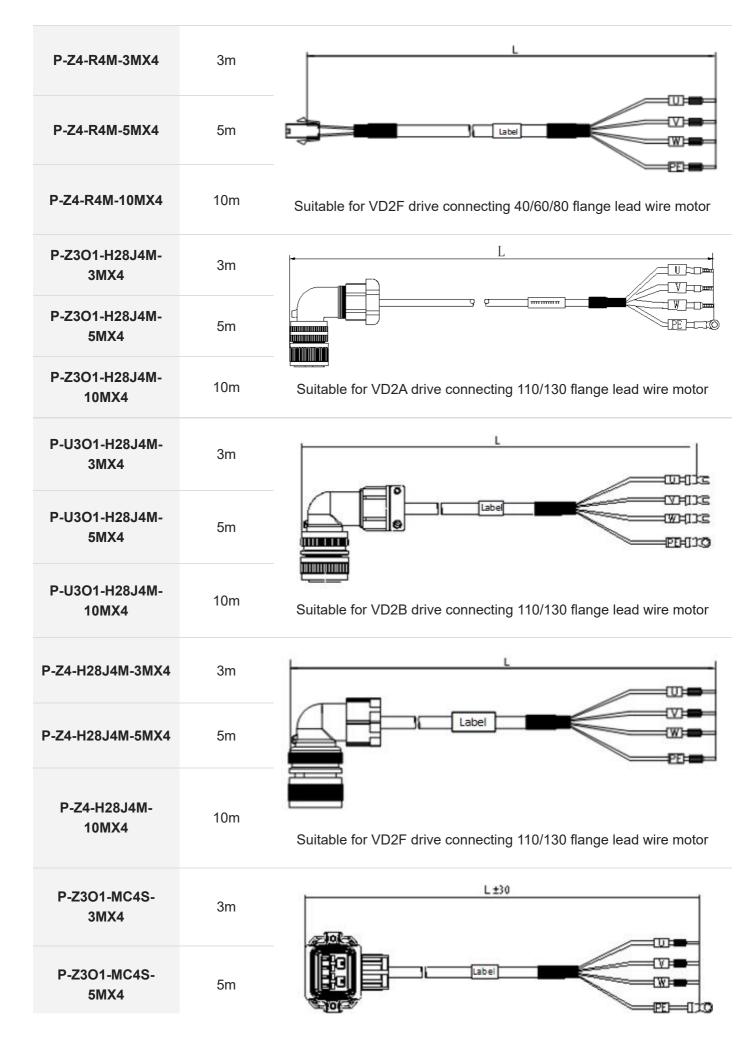
U2-07	Firmware day (month)	Device	Month	0x2007	8199	16-bit
U2-08	Firmware day (day)	Device	Day	0x2008	8200	16-bit
U2-09	Device serial number 1	Device	Day	0x2009	8201	16-bit
U2-10	Device serial number 2	Device	-	0x200A	8202	16-bit
U2-11	Device serial number 3	Device	-	0x200B	8203	16-bit
U2-12	Device serial number 4	Device	-	0x200C	8204	16-bit
U2-13	Device serial number 5	Device	-	0x200D	8205	16-bit
U2-14	Device serial number 6	Device	-	0x200E	8206	16-bit
U2-15	Device serial number 7	Device	-	0x200F	8207	16-bit
U2-16	Device serial number 8	Device	-	0x2010	8208	16-bit

List of codes

Code	Content	Clearable	Stop immediately
Er.01	Parameter damage		\checkmark
Er.02	Parameter storage error		\checkmark
Er.03	ADC reference source error		\checkmark
Er.04	AD current sampling conversion error		\checkmark
Er.05	FPGA communication exception		\checkmark
Er.06	FPGA incorrect program version		\checkmark
Er.07	Clock exception		\checkmark
Er.20	Overcurrent		\checkmark
Er.21	Main power supply is undervoltage	\checkmark	\checkmark
Er.22	Main power supply is overvoltage	\checkmark	\checkmark
Er.23	Braking resistor is not connected	\checkmark	\checkmark
Er.24	Braking resistor is abnormal		\checkmark
Er.25	Braking resistor resistance is too large	\checkmark	\checkmark
	Wrona motor model		\checkmark

Er.26	Wrong motor model		\checkmark
Er.27	Encoder is disconnected	\checkmark	\checkmark
Er.28	Encoder Z pulse is lost		\checkmark
Er.29	The incremental encoder AB count does not equal to the num- ber of encoder lines multiply by 4		\checkmark
Er.30	Encoder UVW signal error		\checkmark
Er.31	The power line is disconnected	\checkmark	\checkmark
Er.32	Exceeding the maximum speed of motor		\checkmark
Er.33	The power module is over temperature	\checkmark	\checkmark
Er.34	Motor overload protection	\checkmark	\checkmark
Er.35	Electronic gear ratio exceeds the limit	\checkmark	\checkmark
Er.36	Position deviation is too large	\checkmark	\checkmark
Er.37	Torque saturation is abnormal	\checkmark	\checkmark
Er.38	The main circuit is electrically deficient	\checkmark	\checkmark
Er.39	Emergency stop	\checkmark	\checkmark
Er.40	Encoder battery failure	\checkmark	\checkmark
Er.41	Motor (encoder) over temperature	\checkmark	\checkmark
Er.42	Encoder write failure	\checkmark	\checkmark
Er.60	ADC conversion is incomplete		\checkmark
Er.61	Internal software fault		\checkmark
Er.62	Internal software fault		\checkmark
Er.63	Internal software fault		\checkmark
Er.64	Internal software fault		\checkmark
Er.65	Internal software fault		\checkmark
A-81	Over speed alarm	\checkmark	
A-82	Overload	\checkmark	
A-83	Braking resistor is over temperature or overload	\checkmark	

A-84	Parameter modification that needs to be powered on again	\checkmark	
A-85	Receive position pulse when servo is OFF	\checkmark	
A-86	Input pulse frequency is too high	\checkmark	
A-88	Main circuit momentary is power off	\checkmark	
A-89	DI port configuration is duplicate	\checkmark	
A-90	DO port configuration is duplicate	\checkmark	
A-91	Parameter modification is too frequent	\checkmark	
A-92	low encoder battery voltage warning	\checkmark	
A-93	Encoder read and write check abnormal and frequency is too high	\checkmark	


Clearable: The panel can be stopped displaying the status by giving a "clear signal"

Stop immediately: The control action state stops immediately.

Wire

Wire model	Wire length	Wire exterior
P-Z3O1-R4M-3MX4	3m	۲
P-Z3O1-R4M-5MX4	5m	
P-Z3O1-R4M- 10MX4	10m	Suitable for VD2A drive connecting 60/80 flange lead wire motor
P-U3O1-R4M-3MX4	3m	L
P-U3O1-R4M-5MX4	5m	
P-U3O1-R4M- 10MX4	10m	Suitable for VD2B drive connecting 80 flange lead wire motor

11 Appendix

P-Z3O1-MC4S- 10MX4	10m	
P-Z4-MC4S-3MX4	3m	L ±30
P-Z4-MC4S-5MX4	5m	
P-Z4-MC4S-10MX4	10m	Suitable for VD2F drive connecting 60/80 flange lead wire motor

Table 11-1 Servo motor power cable exterior diagram

Wire model	Wire length	Wire exterior
E-J1394-R9M- 3MX5-A	3m	L
E-J1394-R9M- 5MX5-A	5m	
E-J1394-R9M- 10MX5-A	10m	Suitable for VD2/VD2F drives connecting 40/60/80 flange lead wire motor (single-turn encoder)
E-J1394-R9M- 3MX7-A1	3m	
E-J1394-R9M- 5MX7-A1	5m	
E-J1394-R9M- 10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 40/60/80 flange lead wire motor (multi-turn encoder)
E-J1394-MC7S- 3MX5-A	3m	
E-J1394-MC7S- 5MX5-A	5m	
E-J1394-MC7S- 10MX5-A	10m	Suitable for VD2/VD2F drives connecting 60/80 flange lead wire motor (single-turn encoder)

E-J1394-MC7S- 3MX7-A1	3m	
E-J1394-MC7S- 5MX7-A1	5m	
E-J1394-MC7S- 10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 60/80 flange lead wire motor (multi-turn encoder)
E-J1394-H28K7M- 3MX5-A	3m	
E-J1394-H28K7M- 5MX5-A	5m	
E-J1394-H28K7M- 10MX5-A	10m	Suitable for VD2/VD2F drives connecting 110/130 flange lead wire mo- tor (single-turn encoder)
E-J1394-H28K7M- 3MX7-A1	3m	
E-J1394-H28K7M- 5MX7-A1	5m	
E-J1394-H28K7M- 10MX7-A1	10m	Suitable for VD2/VD2F drives connecting 110/130 flange lead wire mo- tor (multi-turn encoder)

Table 11-2 Servo encoder power cable exterior diagram

02 Product Information

Servo drives

Model naming

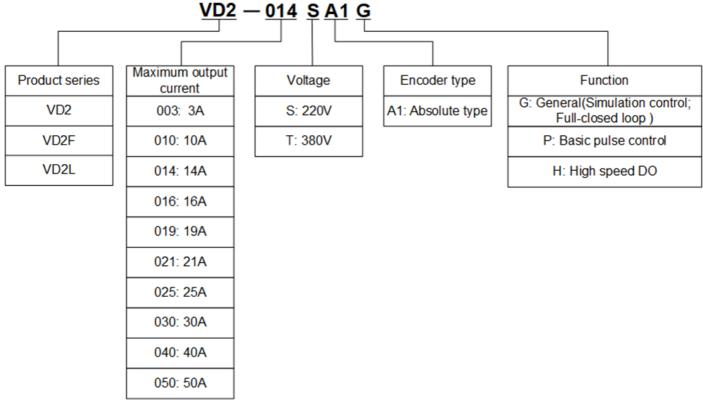


Figure 2-1 Servo drive model

Figure 2-2 (VD2A) and Figure 2-3 (VD2B) show the exterior and nameplate of the VD2 series absolute value servo drive.

Figure 2-4 shows the exterior and nameplate of the VD2F series absolute value servo drive.

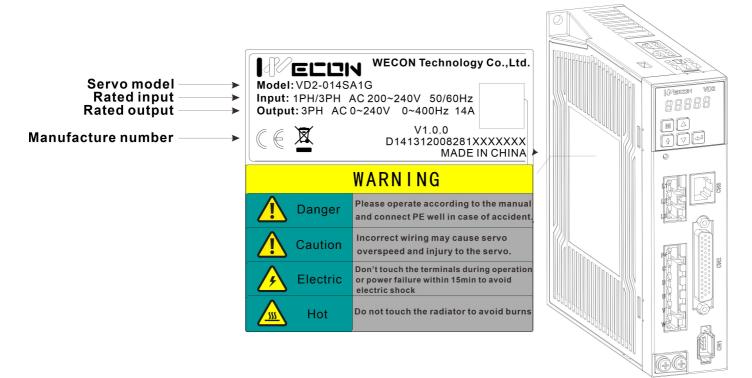


Figure 2-2 Exterior and nameplate of VD2A servo drive

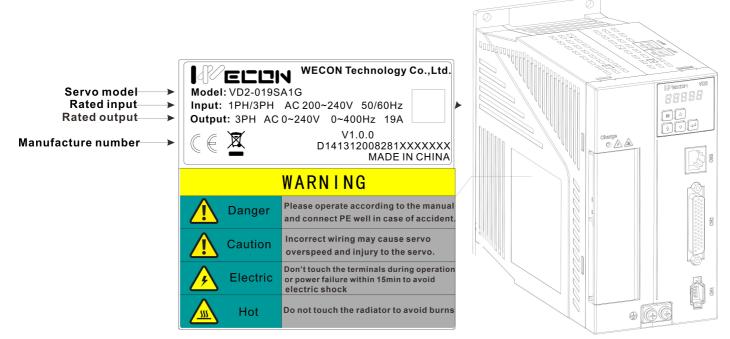


Figure 2-3 Exterior and nameplate of VD2B servo drive

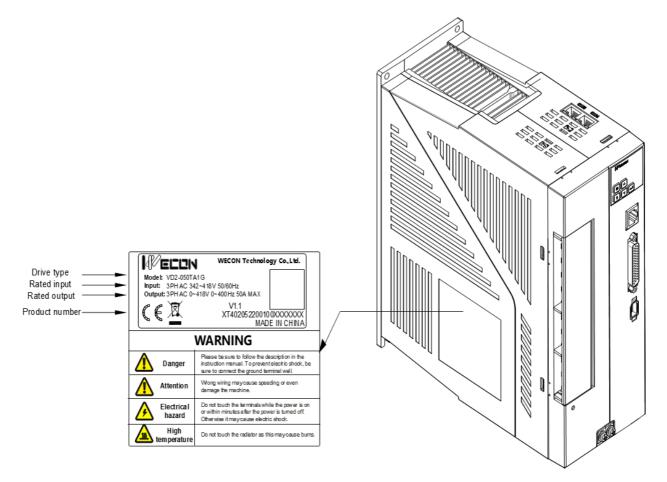
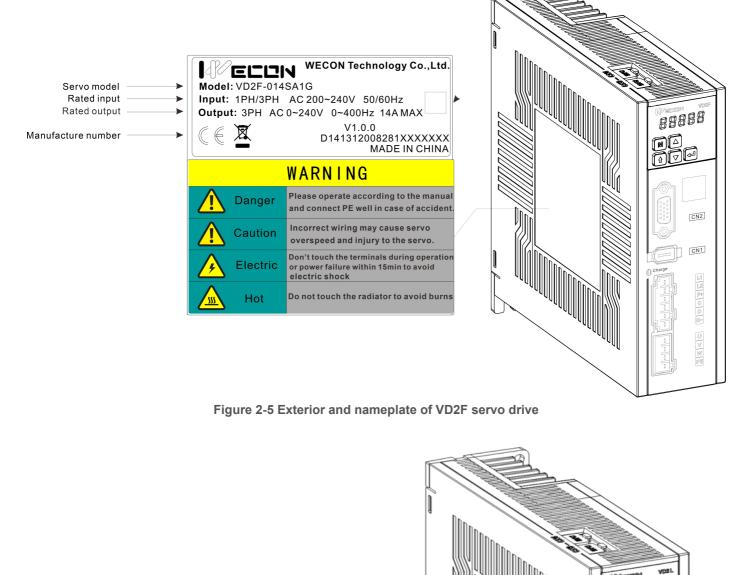



Figure 2-4 Exterior and nameplate of VD2C servo drive

02 Product Information

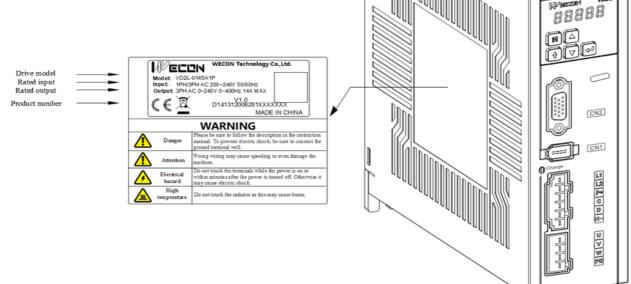


Figure 2-6 VD2L drive appearance and nameplate

Composition

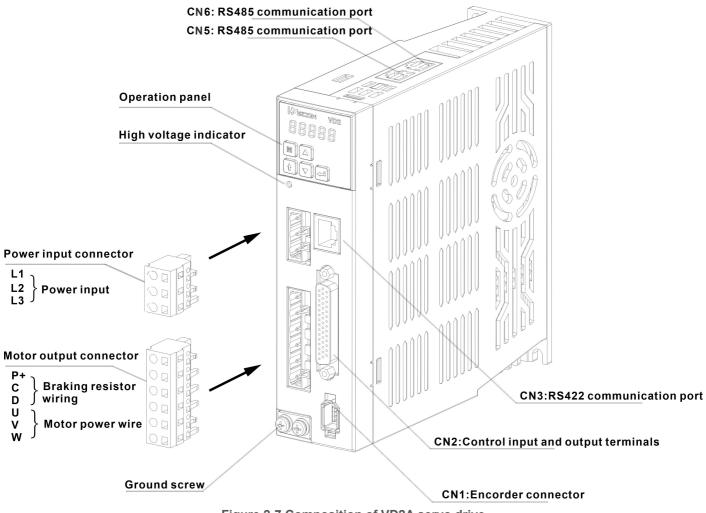


Figure 2-7 Composition of VD2A servo drive

CN5: RS485 communication port

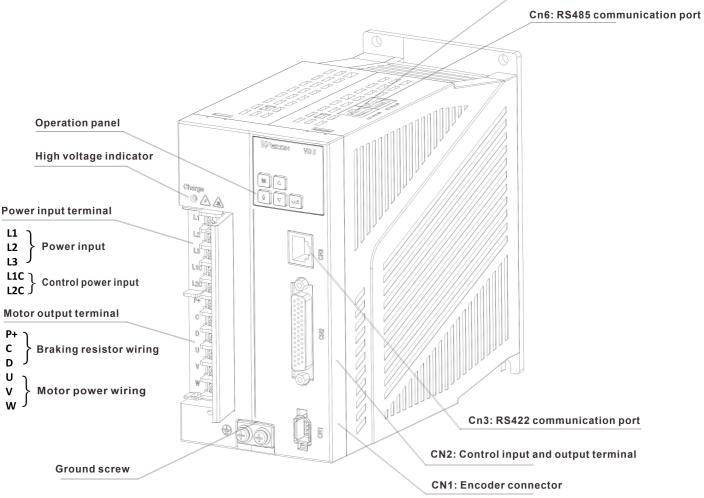


Figure 2-8 Composition of VD2B servo drive

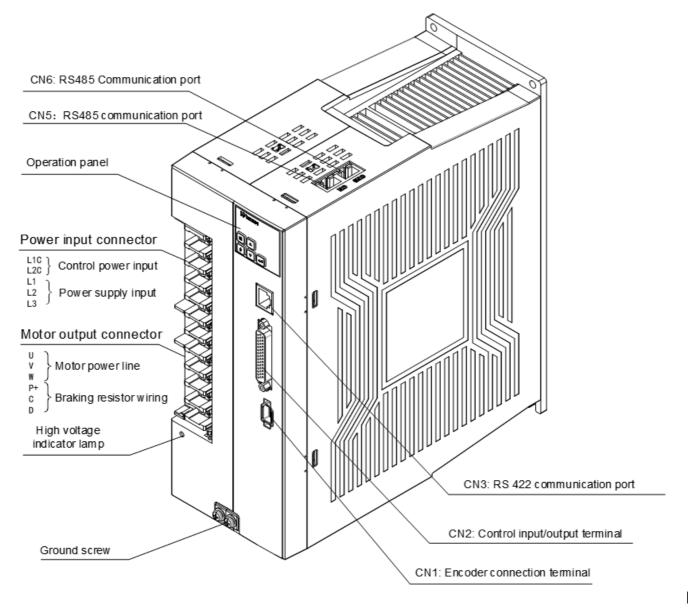
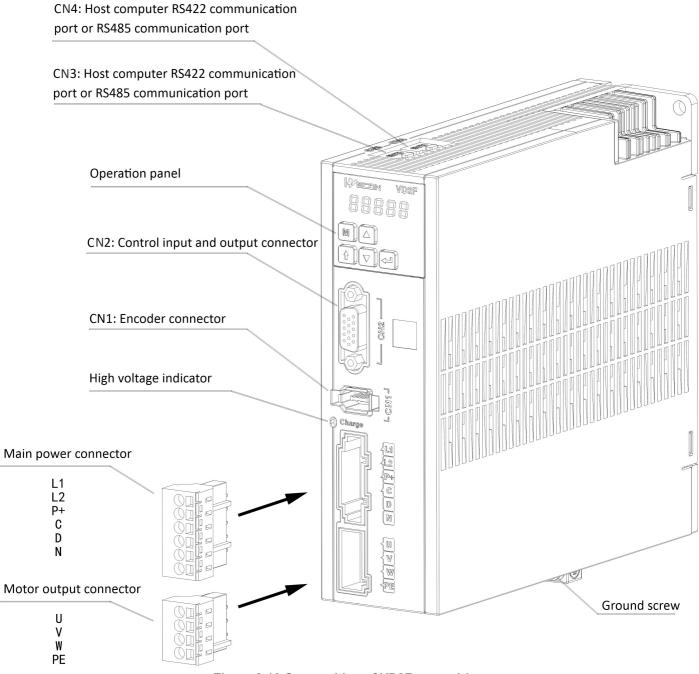
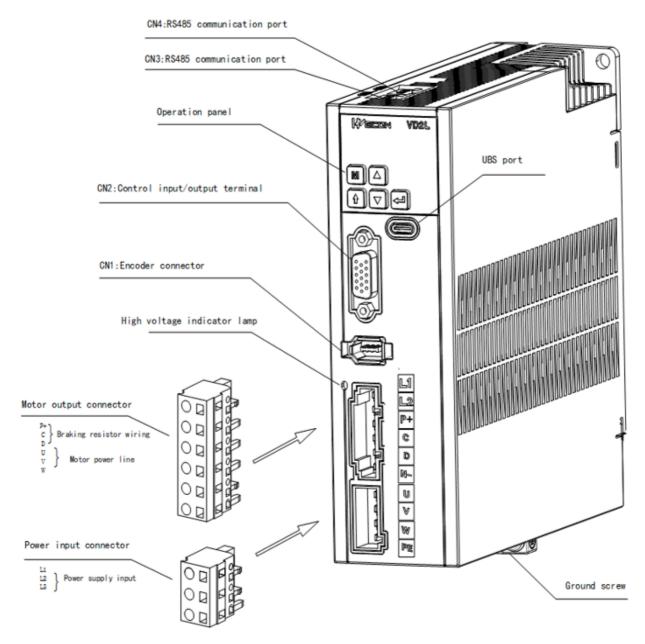
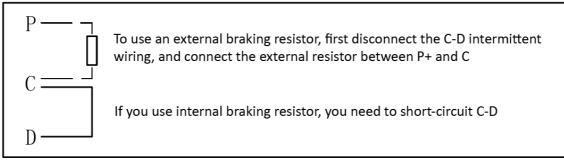




Figure 2-9 Composition of VD2C servo drive



Note: When using external braking resistor or internal braking resistor, special short-circuit processing is required, as shown in the figure below:

Specification

Electrical specifications

ltem		VD2A	VD2B		
Model	VD2-010SA1G	VD2-014SA1G	VD2-016SA1G	VD2-019SA1G	
Maximum output current	10A	14A	16A	19A	
Control power supply	-		Single-phase AC 19	8 to 242V 50/60Hz	
Power supply	Single-phase AC	198 to 242V, 50/60Hz			
Braking resistor	External	Built-in and external	Built-in and external		

Table 2-1 Electrical specification of single-phase 220V servo drive

Item	VD2F			
Model	VD2F-003SA1P	VD2F-010SA1P	VD2F-014SA1P	
Maximum output current	ЗА	3A 10A		
Control power supply	-	-		
Power supply	Single-phase AC 198 to 242V, 50/60Hz			
Braking resistor	External Built-in and ex			

Table 2-2 Electrical specification of single-phase 220V servo drive

Item	VD2B			
Model	VD2-021SA1G	VD2-025SA1G	VD2-030SA1G	
Maximum output current	21A	25A	30A	
Control power supply	Single-phase AC 198 to 242V, 50/60HzThree-phase AC 198 to 242V, 50/60HzBuilt-in and external			
Power supply				
Braking resistor				

Table 2-3 Electrical specification of three-phase 220V servo drive

ltem			VD2C		
Model	VD2- 030TA 1G	VD2-040TA1G		VD2-050TA1G	
Maximum	30A	40A		50A	

output current	30A 40A	50A
Control power supply	Single-phase AC 342V to 440V, 50/60Hz	
Power supply	Three-phase AC 342V to 440V, 50/60Hz	
Braking resistor	Built-in and external	

Table 2-4 Electrical specification of three-phase 380V servo drive

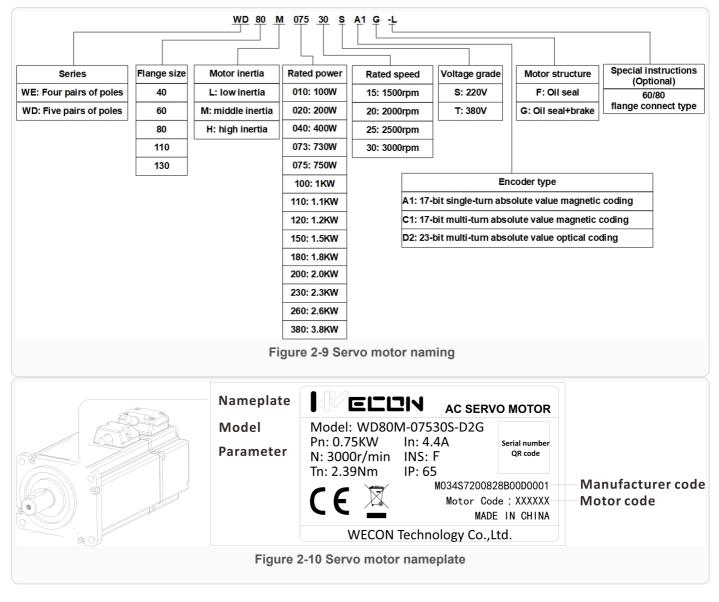
Item	VD2B
Model	VD2-021TA1G
Maximum output current	21A
Control power supply	Single-phase AC 342 to 440V, 50/60Hz
Power supply	Three-phase AC 342 to 440V, 50/60Hz
Braking resistor	Built-in and external

Table 2-5 Electrical specification of three-phase 380V servo drive

Basic specifications

ltem

Specification


Environment	Usage	Temperature	0°C to 40°C		
		Humidity	5% to 95% (no condensation)		
		Shock	3M4, 3mm (2 to 9Hz), Class 1 area		
		Vibration	3M4, 1G (9 to 200Hz), Class 1 area		
	Storage	Temperature	-25°C to 70°C		
		Humidity	5% to 95% (no condensation)		
		Vibration	2M2, 3.5mm (2 to 9Hz)		
	Protection		IP10		
	Circumstan	се	Places with no corrosive gas, flammable gas, combustible materials nearby; splash of water, oil, medicine and less dust, salt and metal powder.		
I/O signal	Digital input (DI) signal		Up to 8 DI channels supported (only 4 channels for VD2F model). The supported DI functions are servo enable, fault clear and alarm, forward drive prohibition, reverse drive prohibition, zero speed bit, deviation counter clear, instruction reversal, emergency stop, electronic gear ratio switch, gain switch, instruction pulse input prohibition, internal speed instruction selection, mixed mode selection, internal multi-segment position enable signal and internal multi-segment position selection.		
	Digital output (DO) signal		Up to 4 DO channels supported. The supported DO functions are servo ready, fault signal, warning signal, rotation detec- tion, zero speed signal, positioning completion, positioning approach, speed consistence, speed approach, torque ar- rival, torque limiting, speed limiting, brake output, servo on state output, Z pulse output and communication VDO output.		
Debug Interface	RJ45		RS485 and RS422		
Position con- trol mode	Input signal	Pulse instruction	Input pulse form: direction + pulse, CW/CCW, AB phase quadrature pulse		
			Input form: differential input, open collector		
			Input pulse frequency: differential input up to 500KHz; open collector up to 200KHz.		
		Internal multi- segment posi- tion instruction			

selection	Configure 4 DI ports for INPOS1, INPOS2, INPOS3, and INPOS4 to select positions in segments 1 to 16		
Position output	Output form	A phase, B phase, Z phase	
Speed control mode	External instruction	Analog voltage	D t 1 0 V , r e s ol u ti o n 1 2 bi ts
	Internal instruction	Internal multi-segment speed instruction selection.	Configure3DIportsforINPOS

		INPOS3, and INPOS4 to select speed in segments 1 to 16	
Torque con- trol mode	External instruction	External instruction	DC±10V, resolution 12 bits
	Internal instruction	Internal instruction	Support torque in- struction values -300% to 300%

Servo motors

Model naming

Composition

02 Product Information

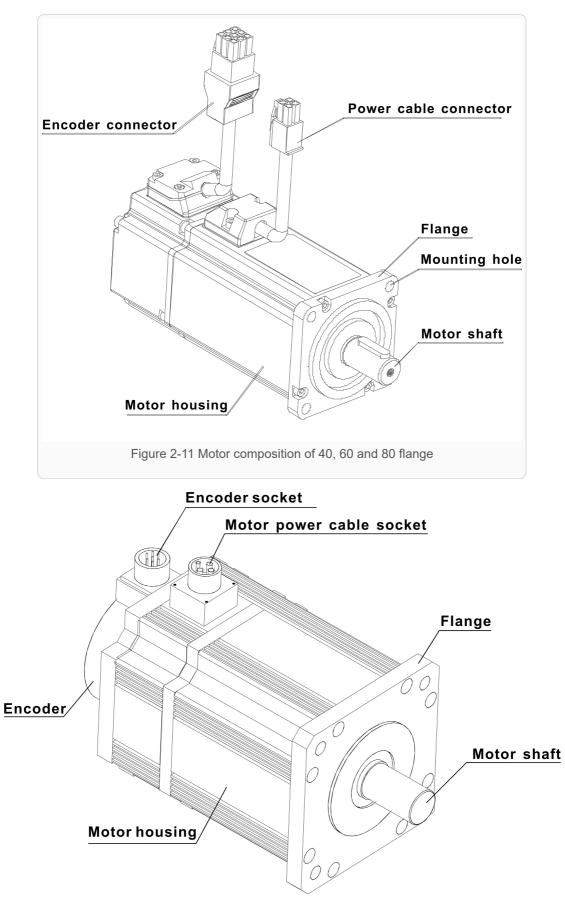


Figure 2-12 Motor composition of 110 and 130 flange

Specification

Wecon motor model	M o t o r c o d e	F I a n g e s i z e	Rated power (KW)	Rated torque (N.m)	Volta ge (V)	Rated speed (rpm)	Encoder type	Brak e
WE130M -10025S- A1F	A 0 9 1	1 3 0	1.0	4.0	220	2500	17-bit single turn absolute magnetic	No
WE130M -15025S- A1G	A 1 1 1	1 3 0	1.5	6.0	220	2500	17-bit single turn absolute magnetic	Yes
WE130M -26025S- C1F	C 1 9 1	1 3 0	2.6	10	220	2500	17-bit multi turn absolute magnetic	No
WE80M- 12030S- C1G	C 2 3 1	8 0	1.2	4.0	220	3000	17-bit multi turn absolute magnetic	Yes
WE110M -18030S- D2G	D 1 3 1	1 1 0	1.8	6.0	220	3000	23-bit multi turn absolute optical	Yes
WE130M -23015S- D2F	D 1 6 1	1 3 0	2.3	15.0	220	1500	23-bit multi turn absolute optical	No

Table 2-1 Wecon Motor Specifications

Note: Only part of the motor models are displayed, please refer to the "Model Selection Manual" for details.